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HyPer

HyPer is the main-memory database system developed in our group

• a very fast database system with ACID transactions

• quite comprehensive SQL support (SQL92 plus many SQL99 features)

• queries are compiled into machine code using LLVM

• very little overhead, excellent performance

You can try it out (or download a demo) online:
http://www.hyper-db.com

We use it for teaching, too. (Easy to use web interface for students).
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Hyper in the Cloud

Currently HyPer is primarily run on a single dedicated node

• but of course we looked at running HyPer in the cloud

• Wolf Rödiger will talk about distributed processing next

• I will concentrate on issues we found during experiments

• some of them quite surprising; could be relevant for your project, too

• not all of them have perfect solutions yet
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Costs of Virtualization

Cloud applications usually run on virtualized machined

• shields the application from the actual hardware

• simplified management, allows for easy migration, etc.

• several different techniques to do that (containers, hypervisors, etc.)

• what does that actually cost?

• in-memory processing is CPU bound

• in an ideal world virtualization would be (nearly) free
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Cooperative Behavior

Cloud infrastructure relies upon cooperative behavior

• virtualized applications utilize ideal resources

• combined system looks more powerful than it really is

• hogging resources is bad for cloud processing

Main resource for HyPer (and probably most other DBMSs):

• main memory

• not only for the “real” data, but also for intermediate results

• some queries have large intermediate results

• allocate a lot of memory
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Allocating and Releasing Memory
Memory allocation is a multi-step process:

1. pages are created in the page table, but (usually) not physically
assigned

2. upon access, pages are assigned and zeroed out
3. upon release, page table is modified again

Problem: this does not scale
• a lot of locking and overhead within the kernel
• costs more than a factor 2 performance with large queries on large

hosts
• even more pronounced on Windows, there “freeing” pages is

surprisingly expensive

Solutions?
• never release memory? (i.e., do your own memory management)
• best performance, but hogs resources
• non-portable techniques? (madvise etc.) Unsatisfying.
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Durability

For ACID, we must 1) not report commit until the WAL record hits
durable media, and 2) avoid data corruption during writes.

• difficult to guarantee even on bare metal

• often requires battery-backed RAID controllers to avoid all issues
(including tearing)

How do we guarantee that on virtualized hardware?

• nearly impossible

• the (virtualized) hardware lies to us

• an inconveniently timed power failure can lead to a disaster

• Microsoft installed special hooks for their cloud DBMS, but that is
not publicly usable

• other vendors probably, too, but not generic solutions exists
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Conclusion

Databases in the cloud are an interesting topic

• many effects that we see are implementation artifacts

• choice of virtualization product has a large impact

• many open issues

• concerning both performance and correctness

• but apparently many people are happy with living dangerously

Still many open research questions.
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Traditional Data Warehouse

Database Data Warehouse

Extract 
Transform 
LoadOLTP OLAP
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HyPer: Hybrid OLTP & OLAP

HyPer
▸ OLTP & OLAP on the
same data at the same time

▸ Efficient snapshotting
▸ Data-centric code
generation

OLTP
> 100,000 TPC-C TX/s

OLAP
▸ Best-of-breed response
times

▸ Real-time analytics

fork()

a

a*

OLTP

copy on 
updateOLTP process

OLAP snapshot

OLAP
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Wishlist for HyPer in the Cloud

◦ Scale query performance with the cluster size
◦ Sustain transaction performance
◦ Scale capacity to process larger workloads
◦ Elastically add servers to the cluster
◦ Provide high availability
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1st Design: Full Replication via Redo Log Multicasting
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load balancing
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redo log

snapshot

Tobias Mühlbauer, Wolf Rödiger, Angelika Reiser, Alfons Kemper, Thomas Neumann,
ScyPer: Elastic OLAP Throughput on Transactional Data, DanaC 2012.
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Scale query throughput, sustain transaction performance
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Elasticity: Materialized snapshots and multicasting

primary HyPer
se

co
nd

ar
ie

s

OLTP

OLAP

2. apply 
redo log

3. subscribe 
to multicast

4. receive queries

persistent storage

new 
server

1. load 
snapshot

Wolf Rödiger HyPer on Cloud 9 7 / 28



High Availability: Secondaries can replace the primary

primary HyPer
se

co
nd

ar
ie

s

OLAP

persistent storage

OLTP

1. replay 
redo log

2. accept 
OLTP

3. start 
multicast

new primary

Wolf Rödiger HyPer on Cloud 9 8 / 28



Multi-Tenancy: Flexible database-as-a-service deployment
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1st Design: Full Replication via Redo Log Multicasting

3 Scales query throughput with the cluster size
3 Sustains transaction performance
3 Allows to elastically add servers to the cluster
3 Provides high availability
7 Limited to workloads that fit into a single server
7 Same query response times as a single server
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2nd Design: Query Processing on Fragmented Relations
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▸ Fragment relations across servers to use the combined
capacity of the cluster, making room for larger workloads

Wolf Rödiger, Tobias Mühlbauer, Alfons Kemper, Thomas Neumann, High-Speed
Query Processing over High-Speed Networks, VLDB 2016.
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Main Challenges
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▸ Challenge 1: Network is a bottleneck to query processing
▸ Challenge 2: Utilize all cores and all servers
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Challenge 1: Network is a Bottleneck

▸ Network is bottleneck
for distributed processing

▸ Manual schema-tuning is
time-consuming and
workload-dependent

▸ Faster network hardware
is not enough, software
has to change 1 2 3 4 5 6
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Remote Direct Memory Access

▸ Zero-copy network
communication:

▸ High network throughput
▸ Almost no CPU cost
▸ Less memory bus traffic

▸ Less CPU cost, higher
throughput than TCP

▸ RDMA achieves full speed
at only 4% CPU load

▸ Recently used to implement
a distributed radix join*

sender

Application

HCA

Operating 
System

receiver

Application

Operating 
System

HCA

Buffer

Buffer

*Barthels et al., Rack-Scale In-Memory Join Processing using RDMA, SIGMOD 2015.
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Network Scheduling

▸ Uncoordinated network
communication causes
switch contention

▸ Communicate in a strict
round-robin fashion

▸ Synchronize via low-latency
RDMA operations

▸ Network scheduling improves
throughput by 40% for an
8-server InfiniBand cluster
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Challenge 2: Utilize all cores and all servers

▸ Exchange partitions
tuples for joins and
aggregations

▸ Traditionally used to
parallelize for multiple
cores and servers

▸ But: Exchange does
not scale well due to
inflexible design
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Classic Exchange

▸ Fixed degree of parallelism
▸ An exchange needs a buffer
for every other exchange:
#buffers per server =
servers × cores2

▸ 2,400 buffers ≈ 1 GB of
main memory per server

▸ Also: Each join key value is
processed by a specific
exchange operator

▸ Heavy hitters are assigned
to a single exchange

exchange

exchange exchange

exchange

exchange exchange

exchange

exchange exchange

exchangeexchange

exchange
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Decoupled Exchange

▸ Communicate indirectly via
communication multiplexers

▸ Address servers not threads:
▸ Decreases memory

consumption
▸ Reduces negative impact
of heavy hitters

▸ Improves applicability of
broadcast optimization

▸ Local load balancing via
work stealing* important
for good scalability
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exchange

exchange
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*Leis et al., Morsel-driven parallelism: a NUMA-aware query evaluation framework for
the many-core age, SIGMOD 2014.
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Hybrid Parallelism = RDMA-based Communication
+ Decoupled Exchange Operators
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Hybrid parallelism scales in the number of cores ...
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... and in the number of servers in the cluster

1 2 3 4 5 6
0×

1×

2×

3×

4×

number of servers

T
P
C
-H

sp
ee
d-
up

(S
F
10
0)

RDMA (40 Gb/s InfiniBand) + scheduling
TCP/IP (40Gb/s InfiniBand)
TCP/IP (1Gb/s Ethernet)

Wolf Rödiger HyPer on Cloud 9 21 / 28



How do we compare?

0 5k 10k 15k 20k 25k

Spark SQL (chunked)

Impala (chunked)

MemSQL (partitioned)
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HyPer (chunked)

HyPer (partitioned)

77
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544

3,856

16,090

20,739

TPC-H queries per hour (SF 100)

Note: MemSQL takes several seconds for query compilation, but
these compilation times are not included in this experiment.
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2nd Design: Query Processing on Fragmented Relations

3 Utilizes the combined capacity of the cluster
3 Reduces query response times
3 Scales query throughput with the cluster size
? How can we add servers with minimal disruption?
? How can we survive server failures?
? How can we sustain the transaction performance?
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Outlook: Elasticity via Highest Random Weight Hashing
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▸ Redistribute data when servers are added/removed
▸ Avoids reshuffling the whole database, balances load evenly

Mukherjee et al., Distributed Architecture of Oracle Database In-memory, VLDB 2015.
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Outlook: High availability via HDFS-style replication
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▸ Replication factor of x allows for x − 1 server failures
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Outlook: Sustain transaction performance

▸ Distributed transactions are
overly expensive:

▸ Two-phase commit
▸ Global locking
▸ Deadlock detection

▸ H-Store model: partitioned
execution of transactions

▸ Works well for TPC-C
▸ Drawbacks:

▸ Requires schema tuning
▸ Not for all workloads

OLTP

OLTP

OLTP

OLAP
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Outlook: Hot/cold approach for distributed transactions
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HyPer on Cloud 9

3 Scale capacity to process larger workloads
3 Reduce query response times
3 Scale query throughput with the cluster size
3 Elastically add servers to the cluster
3 Provide high availability
3 Sustain transaction performance
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Backup Slides
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Keeping secondaries up-to-date

▸ Logical log: transaction
identifier and parameters

▸ Physical log: insert, update
and delete operations

Replay log on secondaries
▸ Logical log excludes:

▸ Readers
▸ Aborts
▸ Redo logging
▸ Undo logging

▸ Physical log also excludes:
▸ Read operations
▸ Costly transaction logic

normal
execution

logical log
replaying
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replaying
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Redo Log Multicasting

▸ Independent of cluster size
▸ UDP unreliable, PGM reliable

TPC-C transactions
▸ ∼60,000 log entries/s
▸ ∼1,500B physical log entry/TX
▸ ∼250B logical log entry/TX

1GbE vs. InfiniBand
▸ 1GbE needs:

▸ Group commits
▸ LZ4 compression (∼50%)

▸ InfiniBand (IPoIB) is sufficient;
PGM is CPU-bound

1GbE PGM

Bandwidth [Mbit/s] 675
Packets [1,000/s] 43
Latency [µs] 100.4

InfiniBand 4×QDR PGM

Bandwidth [Mbit/s] 1,832
Packets [1,000/s] 112
Latency [µs] 13.5
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Guaranteeing correct results

LSN 100

LSN 101

1. 
fork()

2. 
write 
a=a*

3. read a

a

a*

▸ Order-preserving
serializability violation

LSN 103

1. read a

LSN 100

2. read a

a* a

▸ Diverging distributed reads

▸ Logical time defined by log sequence number (LSN)
▸ Global TX-consistent snapshots avoid consistency problems
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NUMA

0 1k 2k 3k 4k 5k

NUMA-aware

interleaved

one socket

TPC-H queries per hour (SF 100)

▸ NUMA-aware allocation of message buffers improves TPC-H
performance by a factor of 2 for a 4-socket server

▸ Our communication multiplexer provides NUMA-local
message buffers to the decoupled exchange operators
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