
HyPer on Cloud 9

Thomas Neumann

Technische Universität München

February 10, 2016



HyPer

HyPer is the main-memory database system developed in our group

• a very fast database system with ACID transactions

• quite comprehensive SQL support (SQL92 plus many SQL99 features)

• queries are compiled into machine code using LLVM

• very little overhead, excellent performance

You can try it out (or download a demo) online:
http://www.hyper-db.com

We use it for teaching, too. (Easy to use web interface for students).

Thomas Neumann HyPer on Cloud 9 2 / 13

http://www.hyper-db.com


Hyper in the Cloud

Currently HyPer is primarily run on a single dedicated node

• but of course we looked at running HyPer in the cloud

• Wolf Rödiger will talk about distributed processing next

• I will concentrate on issues we found during experiments

• some of them quite surprising; could be relevant for your project, too

• not all of them have perfect solutions yet

Thomas Neumann HyPer on Cloud 9 3 / 13



Costs of Virtualization

Cloud applications usually run on virtualized machined

• shields the application from the actual hardware

• simplified management, allows for easy migration, etc.

• several different techniques to do that (containers, hypervisors, etc.)

• what does that actually cost?

• in-memory processing is CPU bound

• in an ideal world virtualization would be (nearly) free

Thomas Neumann HyPer on Cloud 9 4 / 13



Thomas Neumann HyPer on Cloud 9 5 / 13



Thomas Neumann HyPer on Cloud 9 6 / 13



Thomas Neumann HyPer on Cloud 9 7 / 13



Thomas Neumann HyPer on Cloud 9 8 / 13



Thomas Neumann HyPer on Cloud 9 9 / 13



Cooperative Behavior

Cloud infrastructure relies upon cooperative behavior

• virtualized applications utilize ideal resources

• combined system looks more powerful than it really is

• hogging resources is bad for cloud processing

Main resource for HyPer (and probably most other DBMSs):

• main memory

• not only for the “real” data, but also for intermediate results

• some queries have large intermediate results

• allocate a lot of memory

Thomas Neumann HyPer on Cloud 9 10 / 13



Allocating and Releasing Memory
Memory allocation is a multi-step process:

1. pages are created in the page table, but (usually) not physically
assigned

2. upon access, pages are assigned and zeroed out
3. upon release, page table is modified again

Problem: this does not scale
• a lot of locking and overhead within the kernel
• costs more than a factor 2 performance with large queries on large

hosts
• even more pronounced on Windows, there “freeing” pages is

surprisingly expensive

Solutions?
• never release memory? (i.e., do your own memory management)
• best performance, but hogs resources
• non-portable techniques? (madvise etc.) Unsatisfying.

Thomas Neumann HyPer on Cloud 9 11 / 13



Durability

For ACID, we must 1) not report commit until the WAL record hits
durable media, and 2) avoid data corruption during writes.

• difficult to guarantee even on bare metal

• often requires battery-backed RAID controllers to avoid all issues
(including tearing)

How do we guarantee that on virtualized hardware?

• nearly impossible

• the (virtualized) hardware lies to us

• an inconveniently timed power failure can lead to a disaster

• Microsoft installed special hooks for their cloud DBMS, but that is
not publicly usable

• other vendors probably, too, but not generic solutions exists

Thomas Neumann HyPer on Cloud 9 12 / 13



Conclusion

Databases in the cloud are an interesting topic

• many effects that we see are implementation artifacts

• choice of virtualization product has a large impact

• many open issues

• concerning both performance and correctness

• but apparently many people are happy with living dangerously

Still many open research questions.

Thomas Neumann HyPer on Cloud 9 13 / 13



HyPer on Cloud 9

Wolf Rödiger

Technische Universität München



Traditional Data Warehouse

Database Data Warehouse

Extract 
Transform 
LoadOLTP OLAP

Wolf Rödiger HyPer on Cloud 9 2 / 28



HyPer: Hybrid OLTP & OLAP

HyPer
▸ OLTP & OLAP on the
same data at the same time

▸ Efficient snapshotting
▸ Data-centric code
generation

OLTP
> 100,000 TPC-C TX/s

OLAP
▸ Best-of-breed response
times

▸ Real-time analytics

fork()

a

a*

OLTP

copy on 
updateOLTP process

OLAP snapshot

OLAP

Wolf Rödiger HyPer on Cloud 9 3 / 28



Wishlist for HyPer in the Cloud

◦ Scale query performance with the cluster size
◦ Sustain transaction performance
◦ Scale capacity to process larger workloads
◦ Elastically add servers to the cluster
◦ Provide high availability

Wolf Rödiger HyPer on Cloud 9 4 / 28



1st Design: Full Replication via Redo Log Multicasting

primary HyPer
se

co
nd

ar
ie

s

OLTP

OLAP

multicast 
redo log

load balancing

persistent storage

redo log

snapshot

Tobias Mühlbauer, Wolf Rödiger, Angelika Reiser, Alfons Kemper, Thomas Neumann,
ScyPer: Elastic OLAP Throughput on Transactional Data, DanaC 2012.

Wolf Rödiger HyPer on Cloud 9 5 / 28



Scale query throughput, sustain transaction performance

1 2 3 4
0

50k

100k

150k

number of nodes

tr
an
sa
ct
io
ns
/s

0

20k

40k

60k

qu
er
ie
s/
h

OLTP throughput OLAP throughput

Wolf Rödiger HyPer on Cloud 9 6 / 28



Elasticity: Materialized snapshots and multicasting

primary HyPer
se

co
nd

ar
ie

s

OLTP

OLAP

2. apply 
redo log

3. subscribe 
to multicast

4. receive queries

persistent storage

new 
server

1. load 
snapshot

Wolf Rödiger HyPer on Cloud 9 7 / 28



High Availability: Secondaries can replace the primary

primary HyPer
se

co
nd

ar
ie

s

OLAP

persistent storage

OLTP

1. replay 
redo log

2. accept 
OLTP

3. start 
multicast

new primary

Wolf Rödiger HyPer on Cloud 9 8 / 28



Multi-Tenancy: Flexible database-as-a-service deployment

primary

Tenant 1

Tenant 2

Tenant 1

Tenant 1

Tenant 3Tenant 2

Tenant 4

primarysecondary

Tenant 4

secondary secondary secondary

Tenant 4

Tenant 3

Wolf Rödiger HyPer on Cloud 9 9 / 28



1st Design: Full Replication via Redo Log Multicasting

3 Scales query throughput with the cluster size
3 Sustains transaction performance
3 Allows to elastically add servers to the cluster
3 Provides high availability
7 Limited to workloads that fit into a single server
7 Same query response times as a single server

Wolf Rödiger HyPer on Cloud 9 10 / 28



2nd Design: Query Processing on Fragmented Relations

Orders 1

Lineitem 1
Customer 1

Orders 6

Lineitem 6
Customer 6

Orders 1

Lineitem 1
Customer 1

Orders 5

Lineitem 5
Customer 5

Orders 1

Lineitem 1
Customer 1

Orders 4

Lineitem 4
Customer 4

Orders 1

Lineitem 1
Customer 1

Orders 3

Lineitem 3
Customer 3

Orders 1

Lineitem 1
Customer 1

Orders 2

Lineitem 2
Customer 2

Orders 1

Lineitem 1
Customer 1

Orders 1

Lineitem 1
Customer 1

▸ Fragment relations across servers to use the combined
capacity of the cluster, making room for larger workloads

Wolf Rödiger, Tobias Mühlbauer, Alfons Kemper, Thomas Neumann, High-Speed
Query Processing over High-Speed Networks, VLDB 2016.

Wolf Rödiger HyPer on Cloud 9 11 / 28



Main Challenges

CPU 0 CPU 1CPU 0
10 cores

CPU 1
10 cores12

8 
G

B 128 G
B

host 0 host 1

host 3 host 4 host 5

Infiniband 4⨉QDR

59.7 
GB/s

59.7 
GB/s

16 GB/s

4 GB/s

HCA

PCIe 3.0

QPI

QPI
16 GB/s

15.75 GB/s

host 2

▸ Challenge 1: Network is a bottleneck to query processing
▸ Challenge 2: Utilize all cores and all servers

Wolf Rödiger HyPer on Cloud 9 12 / 28



Challenge 1: Network is a Bottleneck

▸ Network is bottleneck
for distributed processing

▸ Manual schema-tuning is
time-consuming and
workload-dependent

▸ Faster network hardware
is not enough, software
has to change 1 2 3 4 5 6

0×

1×

2×

3×

4×

number of servers

T
P
C
-H

sp
ee
d-
up

(S
F
10
0)

TCP/IP (40Gb/s InfiniBand)
TCP/IP (1Gb/s Ethernet)

Wolf Rödiger HyPer on Cloud 9 13 / 28



Remote Direct Memory Access

▸ Zero-copy network
communication:

▸ High network throughput
▸ Almost no CPU cost
▸ Less memory bus traffic

▸ Less CPU cost, higher
throughput than TCP

▸ RDMA achieves full speed
at only 4% CPU load

▸ Recently used to implement
a distributed radix join*

sender

Application

HCA

Operating 
System

receiver

Application

Operating 
System

HCA

Buffer

Buffer

*Barthels et al., Rack-Scale In-Memory Join Processing using RDMA, SIGMOD 2015.

Wolf Rödiger HyPer on Cloud 9 14 / 28



Network Scheduling

▸ Uncoordinated network
communication causes
switch contention

▸ Communicate in a strict
round-robin fashion

▸ Synchronize via low-latency
RDMA operations

▸ Network scheduling improves
throughput by 40% for an
8-server InfiniBand cluster

2 3 4 5 6 7 8
0

1

2

3

4

number of servers
th
ro
ug

hp
ut

in
G
B
/s

all-to-all scheduling

Wolf Rödiger HyPer on Cloud 9 15 / 28



Challenge 2: Utilize all cores and all servers

▸ Exchange partitions
tuples for joins and
aggregations

▸ Traditionally used to
parallelize for multiple
cores and servers

▸ But: Exchange does
not scale well due to
inflexible design

6 (1) 30 (5) 60 (10) 90 (15) 120 (20)

1×

3×

6×

9×

12×

number of cores (per server)

T
P
C
-H

sp
ee
d-
up

(S
F
30
0) HyPer (exchange operators)

Vectorwise (exchange operators)

Wolf Rödiger HyPer on Cloud 9 16 / 28



Classic Exchange

▸ Fixed degree of parallelism
▸ An exchange needs a buffer
for every other exchange:
#buffers per server =
servers × cores2

▸ 2,400 buffers ≈ 1 GB of
main memory per server

▸ Also: Each join key value is
processed by a specific
exchange operator

▸ Heavy hitters are assigned
to a single exchange

exchange

exchange exchange

exchange

exchange exchange

exchange

exchange exchange

exchangeexchange

exchange

Wolf Rödiger HyPer on Cloud 9 17 / 28



Decoupled Exchange

▸ Communicate indirectly via
communication multiplexers

▸ Address servers not threads:
▸ Decreases memory

consumption
▸ Reduces negative impact
of heavy hitters

▸ Improves applicability of
broadcast optimization

▸ Local load balancing via
work stealing* important
for good scalability

exchange

exchange

exchange

exchange

exchange

exchange

exchange

exchange

exchange

exchange

exchange

exchange

CM

CM

CM

*Leis et al., Morsel-driven parallelism: a NUMA-aware query evaluation framework for
the many-core age, SIGMOD 2014.

Wolf Rödiger HyPer on Cloud 9 18 / 28



Hybrid Parallelism = RDMA-based Communication
+ Decoupled Exchange Operators

server 0
NUMA socket 1

NUMA socket 0 RDMA Key

NUMA node

retain count
exchange ID

last message

bytes used

content

RDMA Key

NUMA node

retain count
exchange ID

last message

bytes used

content

1. consume tuples

outgoing messages

incoming message

exchange

7. produce tuples

exchange

per thread

6. deserialize tuples

RDMA Key
NUMA node
retain count
exchange ID

last message

bytes used

content

2. partition + 
serialize tuples

per server

next operator

prev. operator

pa
ra

lle
liz

ed
 q

ue
ry

 p
ip

eli
ne

pa
ra

lle
liz

ed
 q

ue
ry

 p
ip

eli
ne

RDMA Key
NUMA node
retain count
exchange ID

last message

bytes used

content

per thread
communication multiplexer

receive queue 
NUMA socket 1

receive queue 
NUMA socket 0

3. send message 
when full

network 
scheduler

message pool

4. reuse message

send queues

per 
server

per 
socket5a. receive 

local 

– or – 
5b. steal 

work

Wolf Rödiger HyPer on Cloud 9 19 / 28



Hybrid parallelism scales in the number of cores ...

6 (1) 30 (5) 60 (10) 90 (15) 120 (20)

1×

3×

6×

9×

12×

number of cores (per server)

T
P
C
-H

sp
ee
d-
up

(S
F
30
0) HyPer (hybrid parallelism)

HyPer (exchange)
Vectorwise (exchange)

Wolf Rödiger HyPer on Cloud 9 20 / 28



... and in the number of servers in the cluster

1 2 3 4 5 6
0×

1×

2×

3×

4×

number of servers

T
P
C
-H

sp
ee
d-
up

(S
F
10
0)

RDMA (40 Gb/s InfiniBand) + scheduling
TCP/IP (40Gb/s InfiniBand)
TCP/IP (1Gb/s Ethernet)

Wolf Rödiger HyPer on Cloud 9 21 / 28



How do we compare?

0 5k 10k 15k 20k 25k

Spark SQL (chunked)

Impala (chunked)

MemSQL (partitioned)

Vectorwise (partitioned)

HyPer (chunked)

HyPer (partitioned)

77

123

544

3,856

16,090

20,739

TPC-H queries per hour (SF 100)

Note: MemSQL takes several seconds for query compilation, but
these compilation times are not included in this experiment.

Wolf Rödiger HyPer on Cloud 9 22 / 28



2nd Design: Query Processing on Fragmented Relations

3 Utilizes the combined capacity of the cluster
3 Reduces query response times
3 Scales query throughput with the cluster size
? How can we add servers with minimal disruption?
? How can we survive server failures?
? How can we sustain the transaction performance?

Wolf Rödiger HyPer on Cloud 9 23 / 28



Outlook: Elasticity via Highest Random Weight Hashing
e5fa4
4f2b3
1c1fb

553b6
021e7
360d0

1ff5e
c13ff
7d5d9

7448d
8798a
43801

452e2
56f9b
62d4b

a3db5
24e7a
f6f9e new 

server

Orders 3

Orders 5
Orders 1

Orders 2
Orders 6

Orders 4

▸ Redistribute data when servers are added/removed
▸ Avoids reshuffling the whole database, balances load evenly

Mukherjee et al., Distributed Architecture of Oracle Database In-memory, VLDB 2015.

Wolf Rödiger HyPer on Cloud 9 24 / 28



Outlook: High availability via HDFS-style replication

PA
RT

 3

PART 2O
rd

er
s 

3

Orders 2 PA
RT

 3

PART 4
PART 5

O
rd

er
s 

3

Orders 4
Orders 5

PART 1
PART 4

Orders 1
Orders 4

PART 2

PA
RT

 3

PART 5

Orders 2

O
rd

er
s 

3

Orders 5PA
RT

 8

PART 2
PART 5O

rd
er

s 
4

Orders 1
Orders 2

PART 1

PART 5

Orders 1

Orders 5

▸ Replication factor of x allows for x − 1 server failures

Wolf Rödiger HyPer on Cloud 9 25 / 28



Outlook: Sustain transaction performance

▸ Distributed transactions are
overly expensive:

▸ Two-phase commit
▸ Global locking
▸ Deadlock detection

▸ H-Store model: partitioned
execution of transactions

▸ Works well for TPC-C
▸ Drawbacks:

▸ Requires schema tuning
▸ Not for all workloads

OLTP

OLTP

OLTP

OLAP

Wolf Rödiger HyPer on Cloud 9 26 / 28



Outlook: Hot/cold approach for distributed transactions

COLD 3

CO
LD

 9

COLD 6

HOT

COLD 3

CO
LD

 9

COLD 6

HOT

CO
LD

 8
COLD 2

COLD 5

HOT

CO
LD

 8

COLD 2
COLD 5

HOT

CO
LD

 7

COLD 1
COLD 4

HOT

CO
LD

 7

COLD 1
COLD 4

HOT
pr

im
ar

y 
Hy

Pe
r

se
co

nd
ar

ies

OLTPHOT

OLAP

multicast 
redo log

distributed queries on global TX-consistent snapshots

Wolf Rödiger HyPer on Cloud 9 27 / 28



HyPer on Cloud 9

3 Scale capacity to process larger workloads
3 Reduce query response times
3 Scale query throughput with the cluster size
3 Elastically add servers to the cluster
3 Provide high availability
3 Sustain transaction performance

Wolf Rödiger HyPer on Cloud 9 28 / 28



Backup Slides

Wolf Rödiger HyPer on Cloud 9 1 / 5



Keeping secondaries up-to-date

▸ Logical log: transaction
identifier and parameters

▸ Physical log: insert, update
and delete operations

Replay log on secondaries
▸ Logical log excludes:

▸ Readers
▸ Aborts
▸ Redo logging
▸ Undo logging

▸ Physical log also excludes:
▸ Read operations
▸ Costly transaction logic

normal
execution

logical log
replaying

physical log
replaying

0ms

200ms

400ms

600ms

800ms

56%
faster

23%
faster

ex
ec
ut
io
n
tim

e

writers readers aborts

Wolf Rödiger HyPer on Cloud 9 2 / 5



Redo Log Multicasting

▸ Independent of cluster size
▸ UDP unreliable, PGM reliable

TPC-C transactions
▸ ∼60,000 log entries/s
▸ ∼1,500B physical log entry/TX
▸ ∼250B logical log entry/TX

1GbE vs. InfiniBand
▸ 1GbE needs:

▸ Group commits
▸ LZ4 compression (∼50%)

▸ InfiniBand (IPoIB) is sufficient;
PGM is CPU-bound

1GbE PGM

Bandwidth [Mbit/s] 675
Packets [1,000/s] 43
Latency [µs] 100.4

InfiniBand 4×QDR PGM

Bandwidth [Mbit/s] 1,832
Packets [1,000/s] 112
Latency [µs] 13.5

Wolf Rödiger HyPer on Cloud 9 3 / 5



Guaranteeing correct results

LSN 100

LSN 101

1. 
fork()

2. 
write 
a=a*

3. read a

a

a*

▸ Order-preserving
serializability violation

LSN 103

1. read a

LSN 100

2. read a

a* a

▸ Diverging distributed reads

▸ Logical time defined by log sequence number (LSN)
▸ Global TX-consistent snapshots avoid consistency problems

Wolf Rödiger HyPer on Cloud 9 4 / 5



NUMA

0 1k 2k 3k 4k 5k

NUMA-aware

interleaved

one socket

TPC-H queries per hour (SF 100)

▸ NUMA-aware allocation of message buffers improves TPC-H
performance by a factor of 2 for a 4-socket server

▸ Our communication multiplexer provides NUMA-local
message buffers to the decoupled exchange operators

Wolf Rödiger HyPer on Cloud 9 5 / 5


