Information Systems Vol. 17, No. 2, pp. 117-145, 1992 0306-4379/92 $5.00 + 0.00
Printed in Great Britain. All rights reserved Copyright © 1992 Pergamon Press Ltd

ACCESS SUPPORT RELATIONS:
AN INDEXING METHOD FOR OBJECT BASESt

ALFONS KEMPER! and GUIDO MOERKOTTE?
'Lehrstuhl fiir Informatik 111, RWTH Aachen, D-5100 Aachen, Fed. Rep. Germany
Fakultét fir Informatik, Universitit Karlsruhe, D-7500 Karlsruhe, Fed. Rep. Germany

(Received 13 October 1989; in revised form 9 December 1991)

Abstract—In this work access support relations are introduced as a means for optimizing query processing
in object-oriented database systems. The general idea is to maintain separate structures (dissociated from
the object representation) to redundantly store those object references that are frequently traversed in
database queries. The proposed access support relation technique is no longer restricted to relate an object
(tuple) to an atomic value (attribute value) as in conventional indexing. Rather, access support relations
relate objects with each other and can span over reference chains which may contain collection-valued
components in order to support queries involving path expressions. We present several alternative
extensions and decompositions of access support relations for a given path expression, the best of which
has to be determined according to the application-specific database usage profile. An analytical
performance analysis of access support relations is developed. This analytical cost model is, in particular,
used to determine the best access support relation extension and decomposition with respect to specific
database configuration and usage characteristics.

Key words: Indexing, access methods, access cost model, query optimization, obiect-oriented database
systems

1. INTRODUCTION

Record-oriented database systems, e.g. those based on the pure relational or the CODASYL
network model, are widely believed to be inappropriate for engineering applications. There is a
variety of reasons for this assessment: no explicit support of behavior, data segmentation due to
normalization, lacking support of molecular aggregation and generalization, etc.

Object-oriented database systems constitute a promising approach towards supporting technical
application domains. Several object-oriented data models have been developed over the last
few years. However, these systems are still not adequately optimized: they still have problems
to keep up with the performance achieved by, for example, relational DBMSs. Yet it is essential
that the object-oriented systems will yield at least the same performance that relational systems
achieve: otherwise their acceptance in the engineering field is jeopardized even though they provide
higher functionality than conventional DBMSs by, e.g. incorporation of type extensibility and
object-specific behavior within the model. Engineers are generally not willing to trade performance
for extra functionality and expressive power. Therefore, we conjecture that the next couple of
years will show an increased interest in optimization issues in the context of object-oriented
DBMSs. The contribution of this paper can be seen as one important piece in the mosaic of
performance enhancement methods for object-oriented database applications: the support of object
access along reference chains. Access support relations are not intended for optimizing the
computation-intensive modification of, for example, CAD objects in main-memory. Rather,
access support relations are geared towards support of associative search for objects on secondary
storage. Despite the many computation-intensive engineering applications, such as CAD, our
experience with mechanical engineering applications (e.g. Ref. [2]), suggests that there are numerous
applications where the efficient retrieval of objects from secondary memory is essential. Examples
include:

® construction: in the construction phase engineers frequently search for similar artifacts that
have been designed in the past. Only the efficient retrieval of such objects from the database
enables the engineers to exploit past construction work.

tThis is a revised and extended version of “Access support in object bases” [1]

117

118 ~ ALFONS KEMPER and GUIDO MOERKOTTE

e logistics control: in logistics control applications it is often necessary to retrieve object
descriptions of artifacts that were stored a long time ago. Surely, these objects reside on
secondary storage and have to be retrieved into main memory for modification.

® CAD: even in computation-intensive CAD applications it is often necessary to load a
particular subset of objects from secondary storage into the main memory. Indexing
structures should support the localization of these objects in order to expedite the loading
phase.

® maintenance: during machine maintenance it may be essential to retrieve stored descriptions
of particular subcomponents of a complex machinery for e.g. “trouble shooting.”

In the context of associative search one of the most performance-critical operations in relational
databases is the join of two or more relations. A lot of research effort has been spent on expediting
the join, e.g. access structures to support the join, the sort-merge join and the hash-join algorithm
were developed. Recently, the binary join index structure [3] building on links [4] was designed as
another optimization method for this operation.

In object-oriented database systems with object references the join based on matching attribute
values plays a less predominant role. More important are object accesses along reference chains
leading from one object instance to another. Some authors (e-g. Ref. [5]) call this kind of object
traversal also functional join.

This work presents an indexing technique, called access support relations, which is designed to
support the functional join along arbitrary long attribute chains where the chain may even contain
collection-valued attributes. In this respect access support relations constitute materializations of
frequently traversed reference chains. In addition we have developed techniques that allow the
materialization of function results in an object base [6].

The access support relations described in this paper constitute a generalization of two relational
techniques: the /inks developed by Harder [4] and the binary join indices proposed by Valduriez [3].
Rather than relating only two relations (or object types) our technique allows to support access
paths ranging over many types. Our indexing technique subsumes and extends several previously
proposed strategies for access optimization in object bases. The index paths in GemStone [7] are
restricted to chains that contain only single-valued attributes and their representation is limited to
binary partitions of the access path. Similarly, the object-oriented access techniques described for
the Orion model (8] are contained as a special case in our framework. Kepler and Dadam [9] reports
on an indexing technique for hierarchical object structures, i.e. nested relations, which is related
to our access support relations..

Our technique differs in three major aspects from the aforementioned approaches:

® access support relations allow collection-valued attributes within the attribute chain

¢ access support relations may be maintained in four different extensions. The extension
determines the amount of (reference) information that is kept in the index structure.

® access support relations may be decomposed into arbitrary partitions. This allows the database
designer to choose the best extension and partition according to the particular application
characteristics.

Also the (separate) replication of object values as proposed for the Extra object model [10] and for
the PostGres model [11, 12] are subsumed by our technique,

The remainder of this paper is organized as follows. Section 2 introduces the Generic Object
Model (GOM) [13]), which serves as the research vehicle for this work, and some simplified
application examples to highlight the requirements on access support in object bases. Then, in
Section 3 the access support relations are formally defined. In Section 4 we begin the analytical
evaluation of our indexing technique by comparing the cardinalities of various representations of
access support relations. Section 5 is devoted to estimating the performance enhancement in query
processing on the basis of secondary page accesses. Section 6 addresses the maintenance of access
support relations due to object updates. In each of the Sections 4—6 we illustrate the analytical cost
model by some comparative results for characteristic application profiles. In Section 7 some sample
evaluations of typical application mixes, i.e; database usage profiles consisting of updates and
queries, are presented. Section 8 concludes this paper.

Access support relations 119

2. GOM AND ITS DECLARATIVE QUERY LANGUAGE

This research is based on an object-oriented model that unites the most salient features of many
recently proposed models in one coherent framework. In this respect, the objective of GOM [13]
can be seen as providing a syntactical framework of the essential object-oriented features identified
in the “Manifesto” [14]—albeit the GOM model was developed much earlier. Independently —but
with the same intention—Zdonik and Maier developed the so-called Reference Model in [15]. The
features that GOM provides are relatively generic (and basic) such that the results derived for this
particular data model can be applied to a variety of other object-oriented models. A list of
object-oriented models, to which our proposed indexing method can be applied in a straightforward
manner is compiled as follows: GemStone [16], O,[17], Orion [18], ObjectStore [19], EXTRA [5]
and the Reference Model [15].

2.1. Main concepts of GOM .
GOM provides the following object-oriented concepts:

object identity Each object instance has an identity that remains invariant throughout its lifetime.
The object identifier is invisible for the database user; it is used by the system to reference objects.
This allows for shared subobjects because the same object may thus be associated with many
database components.

values GOM has a built-in collection of elementary (value) types, such as char, string, integer, etc.
Instances of these types do not possess an identity, rather their respective value serves as their
identity.

type constructers The most basic type constructor is the tuple constructor—denoted as []—which
aggregates differently *yped attributes to one object. In addition, GOM has the two built-in
collection type constructors set, denoted as { }, and list, denoted as ¢).

subtyping A tuple-structured type ¢ may be defined as the subtype of one other tuple-structured
type s which means that ¢ inherits all attributes of the supertype s.

strong typing GOM is strongly typed, meaning that all database components, e.g. attributes, set
elements, etc., are constrained to a particular type. However, the constrained type constitutes
only an upper bound, the actually referenced instance may be a subtype-instance thereof.

instantiation Types can be instantiated to render a new object instance. All internal components

of a newly instantiated tuple object are initially set to NULL, the undefined value. Set- and

list-instances are initially set to the empty set or list.

uni-directional references Even though this is actually an implementation issue, because of its
relevance to our indexing scheme we want to mention here, that GOM—like almost all other
objects models (especially the ones mentioned above)—maintains references from one object to
another only uni-directionally.

2.2. Type definitions

Ifs,t,t,...,1,are types, and q,, ..., a, are pairwise distinct attribute names then

type ¢ supertype s is
lay:t,,...,a,:,]

is a tuple structured type definition.t In this case, the supertype s—which is optionally defined
—must itself be a tuple-structured type. The type 1 is called a (direct) subtype of s and inherits all
attributes of s (including those that s inherited from its supertype, if any).

Aside from tuple-structured types GOM provides built-in support for two collection types: sets
and lists which are defined as follows: ’

type ¢ is type 1 is
{s} (s>

tWe presented only the structural parts of our object type definitions; of course, there are type-specific operations that can
be defined by the database user.

120 ALFONS KEMPER and GUIDO MOERKOTTE

ROBOT ARM TOOL MANUFACTURER
i Name: “R2D?” id Kinematics: ... i Function: “welding” ”) Name: “RobClone”
Arm: id, -lMogntedToolz idy 21\/IanufaucturedBy: td 5 " IMocation: “Utopia”
idy Name: “X4D5” i Kinematics: [Function: “gripping”
Arm: idg !IMountedTool: idy ! 7T\/IanufacturedBy: id
i Name: “Robi” id Kinematics: ...
8 Arm: idg *MountedTool: 1dy

Fig. 1. Database extension with linear paths.

Here, s has to be a tuple-structured (i.e. complex) object type or an atomic type. At the present
we do not deal with nested set types with respect to our indexing structures. Since the access support
on ordered collections, i.e. lists, is analogous to sets we will not elaborate on list-structured types
in the remainder of this paper.

2.3. (Engineering) example application

Let us first sketch an engineering application that heavily utilizes tuple-structured type s:
modeling robots. The following schema constitutes an outline of such a—drastically simplified—
robot model:

type ROBOT is [Name: STRING, Arm: ARMJ;

type ARM is [Kinematics: . .., MountedTool: TOOL];

type TOOL is [Function: STRING, ManufacturedBy: MANUFACTURER];
type MANUFACTURER is [Name: STRING, Location: STRING];

As can be deduced from the schema, a ROBOT has a Name and an Arm attribute, the latter
itself referring to a composite object of type ARM. An ARM instance is described by its
Kinematicst and a MountedTool, an attribute referring to an instance of type TOOL. A TOOL
is modeled by a string-valued attribute Function and the attribute ManufacturedBy which associates
a MANUFACTURER object, which itself contains atomic attributes Name and Location, with the
TOOL instance.

An extension of such a schema for just three ROBOT instances identified by id,, ids and idy is
graphically depicted in Fig. 1. An object instance is a triple (id,v,t) where id denotes the
system-wide unique object identifier, v the object representation (everything inside the box in our
graphical sketch), and ¢ the type of the object. As indicated in Fig. 1 references are uni-directional,
i.e. they are maintained in one direction only. As mentioned above, this conforms to (almost) all
proposed object models ‘

2.4. The query language

For our object model we developed a QUEL-like [21] query language along the lines of the
EXCESS object query language that was designed as the declarative query language for the
EXTRA object model [5]. Currently, our optimizer [22] supports only the declarative QUEL-like
query language. In the future we intend to support other declarative query languages as well as
the optimization of procedurally specified database access.

Let x; be variables, T; set typed expressions or type names, and S a selection predicate. Then,
a query has the following form:

range x,: T\,...,x,: T,
retrieve x;
where S(x;,...,x,)

1This complex attribute is not further elaborated here. For more details see Ref. [20].

Access support relations 121

The selection predicate S in variables x,, ..., x, may consist of path expressions, comparison
operators, set operators, boolean connectors and may also contain a (nested) retrieve statement.
Our current implementation of the GOM query language facilitates single-target queries only.

A query in such an object-oriented system would retrieve objects on the basis of attribute values
of others associated objects along a reference chain, i.e. a path expression. A typical example is:

Example 2.1. Find the Robots which use a Tool manufactured in “Utopia™. This query can be
formulated in our QUEL-like language as follows:

range r: ROBOT
retrieve r
where r.Arm.MountedTool.ManufacturedBy.Location = “Utopia”

The path expression used in this example can be outlined as follows (the underbraces indicate the
type of the respective sub-path):

P = ROBOT.MountedTool. ManufacturedBy.Location
Y

TOOL

. J
Y
N MANUFACTURER S
Y
STRING

The cost to evaluate this query can be estimated as (under the assumption that each TOOL is
mounted on some ROBOT and each MANUFACTURER produces some TOOL):

#(ROBOT) + #(TOOL) + #(MANUFACTURER)

where # () denotes the cardinality of the extension of type ¢. This cost is induced because—no
matter how good the query evaluation algorithm performs—every instance of the respective type
has to be visited at least once. e

2.5. General paths (containing collection-valued attributes)

Note that a linear path contains only attributes referring to a single object. Single-object-valued
attrributes are only useful to model 1:1, or N :1 relationships. In order to represent 1: M,
or general N : M relations one needs to incorporate collection-valued attributes, i.e. attributes
referring to a set or list instance. To illustrate this let us define a database schema for modeling
a COMPANY composed of a set of DIVISIONs. Each DIVISION Manufactures a set of
PRODUCTsS, which themselves are composed of BASE_PARTs.

coMPANY g Name: “Merceder’,

DIVISION gy Nome: “Aue” | g Names MInuck” L) tactunes NULL
eropucs] fane SOSEC [AT | [l s
BASE.PART

Fig. 2. Database extension with non-linear paths.

122 ALFoNs KEMPER and GUIDO MOERKOTTE

The schema is outlined below:

type COMPANY is [Name: STRING, Divisions: {DIVISION}];

type DIVISION is [Name: STRING, Manufactures: {PRODUCT}};
type PRODUCT is [Name:; STRING, Composition: {BASE_PART}];
type BASE_PART is [Name: STRING, Price: DECIMALJ;

A sample extension of this schema is presented in Fig. 2.

Now let us illustrate some typical queries in our QUEL-like syntax which access objects along
references (possibly leading through sets).

Example 2.2. Which DIVISION of Mercedes uses a BASE_PART named “Door’?

range c¢: COMPANY, d4: DIVISION
retrieve d
where c.Name = “Mercedes” and
d in c.Divisions and
“Door” in d.Manufactures.Composition.Name

Example 2.3. Retrieve all the BASE_PARTS used by Mercedes.

range c¢: COMPANY, b: BASE_PART
retrieve b
where c¢.Name = “Mercedes” and
b in c.Divisions.Manufactures.Composition

3. ACCESS SUPPORT RELATIONS
3.1. Auxiliary definitions
A path expression has the form
0.4,. . A,

where o is a tuple structured object containing the attribute 4, and 0.4,. - - - . 4, refers to an object
or a set of objects, all of which have an attribute A; .. Thus, the result of the path expression is
the set R,, which is recursively defined as follows: ‘ '

Ry=1{o}
Ri=|J) vd, forl<ign.
veR;

Thus, R, is a set of OIDs of objects of type 1, or a set of atomic values of type ¢, if ¢, is an atomic
data type, such as INT.

It is also possible that the path expression originates in a collection C of tuple-structured objects,
i.e. C.A,. . A,. Then the definition of the set R, has to be revised to: Ry=C.

Formally, a path expression or attribute chain is defined as follows:

Definition 3.1. (Path expression) Ler 1, . . ., t, be (not necessarily distinét) types. A path expression
on ty is an expression ty. A,. . A, iff for each 1 <i <n one of the following conditions holds:

® The type t;_, is defined as type t,_, is [...4;:t,..] ie t,_, is a tuple with an attribute A;
of type 1.}

® The type t;_, is defined as type 1,_, is [...4;:t],...) and the type t| is defined as type ¢t/ is
{t:}, i.e. t] is a set type whose elements are instances of t,. In this case we speak of a set occurrence
at A;in the path ty. A,.---. A,. '

For simplicity of the presentation we assumed that the involved types are not being defined as
a subtype of some other type. This—of course——is generally possible; it would only make the
definition a bit more complex to read.

1This means that the attribute 4, can be associated +** ohjects of type ¢, or any subtype thereof,

Access support relations ' 123

The second part of the definition is useful to support access paths through sets.t If it does
not apply for a given path the path is called linear. A path expression that contains at least one
set-valued attribute is called ser-valued.

For simplicity we require each path expression to originate in some type ¢,; alternatively we could
have chosen a particular collection C of elements of type ¢, as the anchor of a path.

Since an access path can be seen as a relation we will use relation extensions to represent access
paths. The next definition maps a given path expression to the underlying access support relation
declaration.

Definition 3.2. (Acéess support relation [ASR]) Let 1y, ...,1t, be types, t,. A,. - . A, be a path
expression. Then the access support relation [t,. A,.- - - . 4,] is of arity n + 1 and has the Sollowing
Sform:

lto- Ao A,]: [Ses -+, S,]

The domain of the attribute S, is the set of identifiers (OIDs) of objects of type t, for (0 <i < n).
If 1, is an atomic type then the domain of S, is t,, i.e. values are directly stored in the access support
relation. ‘

We distinguish several possibilities for the extension of such relations. To define them for a path
expression fo.4,.- . A, we need n temporary relations [1,. 4,],...,[t,_,. 4,]

Definition 3.3. (Temporary binary relations) For each i (1 <i < n)—that is, for each attribute in the
path expression—we construct the temporary binary relation [t;_,.A,]. The relation [t,_,.4;]
contains the tuples (id(o,_,), id(o,)) for every object o,_, of type t,_, and o, of type t, such that
® o._,.4,=o0, if A, is u single-valued attribute.
® o,c0,_.A; if A is a set-valued attribute.
If 1, is an atomic type then id (o,) corresponds to the value o, _,.A,. Note, however, that only the
last type t, in a path expression can possibly be an atomic type.

Example 3.4. Let us re-consider the path expression of our schema COMPANY (again, we indicate
the types of the subpaths by the underbraces):

P = COMPANY.Divisions, Manufactures. Composition.Name
Y

. DIVISION ,
Y
. PRODUCT)
. BASE_PART ' ,
Y
STRING

For this path expression the temporary binary relations have extensions as shown in Table 1.

3.2. Extensions of access support relations

Let us now introduce different possible extensions of the ASR [#,.4,.- - .4,]. We distinguish
four extensions:

1. The canonical extension, denoted [t,.4,. . A,].n contains only information about
complete paths, i.e. paths originating in f, and leading (all the way) to ¢,. Therefore, it can
only be used to evaluate queries that originate in an object of type ¢, and “go all the way”

to f,.

2. The left-complete extension [t,. A;.- " -. A,,]],e,, contains all paths originating in #, but not
necessarily leading to 1,, but possibly ending in a NULL.

3. The right-complete extension [t,. A,. - - - . A,],» analogously, contains paths leading to ¢,,

but possibly originating in some object o, of type t; which is not referenced by any object of
type #;,_, via the A; attribute.

4. Finally, the full extension [t,. 4,. - - . A,] s contains all partial paths, even if they do not
originate in #; or do end in a NULL.

tNote, however, that we do not permit powersets.

124 ALFONS KEMPER and GUIDO MOERKOTTE

Table 1
[COMPANY Divisions] [D1VISION. . Manufactures)
OIDcoypany _ OIDpwision OfDpision O1Dpropucr
id, id, id, id,
idy id, id, idg
id, id, id, id,
[PRODUCT.Composition] {BASE_PART.Name}
. OlDpropycr OIDpase parr OIDgyse_part STRING
idg idy idy “Door”

id,, id\, id\y “Pepper”

Definition 3.5. (Extensions) Let [>< (I><T, <, D<T) denote the natural (outer, left outer, right
outer) join on the last column of the first relation and the first column of the second relation. Then
the different extensions are obtained as follows:

[to- Ay . Ay]eaw=[te- 4] D<A - D<A t0-s- 44]

[to- 4. A pr=[te- A] D<T - D<C[t,_1. 4]

[to- A1+ Ay Jie=C - ([to- A] D11 4,] - D<A [ta-y- 44]

[to-Ar - A=t AT D<C - [tu_s. Ay] D<C[te 1. AD--) O

Example 3.6. For the path of Example 3.4 the full extension, whch is denoted as
[COMPANY Divisions. Manufactures.Composition.Name] 5y

looks as shown in Table 2. This extension contains all paths and subpaths corresponding to the
underlying path expression. The first two tuples actually constitute complete path which would be
present in the canonical extension as well; however the last three paths would be omitted in the
canonical extension. In the left-complete extension the first four tuples would be present, whereas
the last one would be omitted since it does not originate in COMPANY. Analogously, the
right-complete extension would contain the first two and the last tuple and omit the third and
fourth tuple since they do not *“‘go all the way through” to a STRING representing the Name of
some BASE_PART.

The next definition states under what conditions an existing access support relation can be
utilized to evaluate a path expression that originates in an object (or a set of objects) of type s.

Definition 3.7. (Applicability) An access support relation [[to. Ay A,,]] y under extension X is

applicable for a path s. A;.---. A; with s <t;_, under the followig condition, depending on the
extension X : '

X =full Al1<ig<j<

=left Al=i<]j <n
Applicable(|t,. A,.- . A s.A;. - A)=
pp ([[0 1 n]]X’ i _/) X-—rzght/\l 1<]-—n
X=can ANl =i<j=n
Here s < t,_, denotes that type s has to be identical to type t,_, or a subtype thereof.
Table 2
[COMPANY.Divisions.Manufactures.Composition.Name],,
OIDCOMPANY o'DDlVISION OIDPRODUCT OIDBASE_PART STRING
id, : id, idj id, “Door"
idy id, id, idg “Door”
id, id, id, — -
idy id, - — —

— — id,, idy, “Pepper”

Access support relations ‘ 125

[to Ay AL P
Si|---] 5

B*- tree B*- tree

Scheme 1

3.3. Decomposition and storage structure of ASRs

Aside from extensions, we also facilitate the decomposition of access support relations. The
following formally defines valid decompositions:

Definition 3.8. (Decomposition) Let [t,. A,. . A,]y be an (n + 1)-ary access support relation with
attributes Sy, . . ., S, under extension X, for X € {can, full, left, right}. Then the relations

lto. Ay AEV (S, ..., 8] for 0<i, <n

Iro- Ay 4,92 (S,,...,8,] foriy<i,<n

[to- Ao A% S, .., S, Jor i, <n
are called a decomposition of [t,. A,.- . A,|x. The relations [ty. A,. . A,[ys+V are called

partitions for (0 <j <k).} They are materialized by projecting the corresponding attributes of
[to- Ay - A

)(l[tm A 'An]]X)

If every partition is a binary relation the decomposition is called binary. The above decomposition is
denoted by (0, i,,i,,...,i,n). '

ﬁto. A] S A"]]w")+l):=n(5‘_.sl

A R S'j+l

Theorem 3.9. Every decomposition of an access support relation is lossless.

The proof of this theorem is straightforward since the decomposition is materialized along
multi-valued dependencies. For any partition with (0<i <¢g <j<n)

[t A AJE (S, S,y oo, S]]

the following multi-valued dependency holds:

{S,}—=1{S.,....S,_1}
Therefore, the decomposition into
[to- Ao A 52:[S,...,8,] and 1. A4,.- - A,]80:(S,,...,S)]
is lossless. Repeated application of this argument yields the theorem. 0O

The storage structure of access support relations is borrowed from the binary join index proposal
by Valduirez [3]. Each partition is redundantly stored in two B™-trees: the first being clustered
(keyed) on the left-most attribute and the second being clustered on the right-most attribute.
Graphically, this storage scheme is visualized as shown in Scheme 1.

We will call the left B*-tree the “forward clustered” tree, and—analogously—the right one the
“‘backward clustered” tree. This storage scheme is well suited for traversing paths from left-to-right
(forward) as well as from right-to-left (backward) within the access support relations even if they
span over several partitions. Again, let us graphically visualize the situation, Scheme 2.

Scheme 2 illustrates the virtues of the redundant storage model for ASRs. It directly supports
the lookup of the OID id,, in the right partition [, 4,.---. 4,]¥/ (via its B*-tree clustered on
the right attrribute) and the evaluation of the semi-join across the three partitions from right to

tFor notational convenience let ip=0 and i, =n.

126 ALFONs KEMPER and GUIDO MOERKOTTE

[to A A" [toAy. - AJL D [toA;. . AU
Si SN S; S; Ce S; Si . Si'
idqy e ido2 | pe | id22 s idaz | pe | idas cee id4a
ides s id77 | >q | idy7 ce ides | >« | idass ce idgg
Scheme 2
to retrieve the object identifier id,, in the left partition [to- 4,.---. 4,]¥"". Thus, the backward

traversal constitutes a “right-to-left” semi-join across partitions:

”s,;([[to- Ay An]](xil'“ D> ([[’o- Ay An]](xi'j) >< Usjr=id“(I[t()'Al' e An]]f\!”))))

Analogously, the “forward clustered” B*-tree supports the semi-join from left to right, such that,
for instance, the object identifier(s) of object(s) that are associated with idys are efficiently retrievable
—in our case this is the OID id,, from the right partition. This corresponds to the “left-to-right”
semi-join across partitions:

ﬂsj'(((as,-.ﬂd“(’m Ao An]]f\fil'i))) > [[to- A -Anll(}'j)) > [[’o- A An]](xj'f))-

Note, that a binary decomposed access support relation in full extension is similar to
conventional indexes in relational systems. Except, in our storage model of ASRs the index is
clustered in both directions—in relational systems an index is only used in one direction, i.e. it
relates attribute values to tuples. Binary partitions of other extensions, i.e. can, right and left, of
an access support relation, however, contain only selective information—thereby limiting the search
space for query evaluation. :

4. ANALYTICAL COST MODEL: CARDINALITY OF ACCESS
SUPPORT RELATIONS

The different decompositions and extensions provide the database designer a large spectrum
of design choices to tune the access support relations for particular application characteristics. .
The remainder of this paper is devoted to the development of an analytical cost model that
supports the task of finding the optimal extension and decomposition of an access support relation
for a given database usage profile. .

In this section we start the analysis of our indexing scheme based on an analytical cost model.
Ultimately, the cost model is used to derive the best physical database design, i.e. to find the best
extension and decomposition of the ASR for a given path expression according to the operation
mix. First we have to design a model in which the object base extension, in which we consider a
path expression, can be described. Then we analyze the storage costs for access support relations
in various extensions and decompositions.

4.1. Preliminaries

Before deriving formulas for estimating the sizes of the relations we introduce some parameters
that model the characteristics of an application. For the examples presented in the paper we can
divide the parameters into two groups. The first group comprises the parameters specifying the
application characteristics. These are: n which denotes the path length; c; the total number of objects
of type #; d; the number of objects which have non-NULL references for the attribute A, to
objects of type 1, |; f; (fan-out) is the average number of references emanating from attribute 4, ,

Access support relations 127

application-specific parameters

parameter | semantics default
n length of access path
¢ total number of objects of type t;
d; the number of ob jects of type ¢; for which the attribute
Aiyy isnot NULL
f; the number of references emanating on the average

from the attribute A;4; of an object o; of type {; whose
Ay attribute is not NULL)

€; the number of objects of type t; which are referenced | min(e;,di—y * fi—1)
by an object of type t;_;

size; average size of objects of type ¢;

system-specific parameters
PageSize | net size of pages PageSize = 4056
OIDsize size of object identifiers OIDsize = 8
PPsize size of page pointer PPsize = 4

Fig. 3. System and application parameters.

of an object of type {;; e; is the number of objects hit by a reference from an attribute 4, of an
object of type ¢;,_,; and the parameter size;, denoting the average size of objects of type ¢,. The
second group consists of fixed system-parameters. These are the page size (PageSize); the number
of bytes necessary to store an object identifier (OIDsize); and the size of a page pointer, i.e. a
reference to a page (PPsize). All parameters are summarized in Fig. 3.

4.1.1. Some derived quantities. The average number of objects of type ¢, that reference the same
object in ¢,, | is denoted as shar;. A uniform distribution of references from objects in ¢; to objects
in ¢, is assumed.

In this case shar; is derived as:

df
shar; = —'}i m
€iv1
The parameter spread; denotes the relation between the number of defined objects of type ¢, and
the referenced objects of type ¢, ,:

spread; = ——‘ﬂ— 2)

€t

The value ref; denotes the number of references emanating from objects of type ¢;:

refi=d,f,. (3)
The probability P, that an object o, of type ¢ has a defined 4,,, attribute value is
d;
PA,» == —E‘— . (4)

The probability P, that a particular object o, of type #; is “hit” by a reference emanating from some
object of type ¢,_, is:

P, =— ' 5)

Let us now derive the probability that, for some object o; of type ¢; none of the f; references of the
attribute o,. 4, , hits a particular object o,,, €, ;, which belongs to the e, referenced objects.
This number is derived as a fraction of two binomial coefficients (see Ref. [23]):

<ei+l"l>
fi =ei+|—f;'=l__f_i

(ei+l) €t ei+l'
fi

(6)

128 ALrFoNs KEMPER and GuiDO MOERKOTTE

Note that
' I fi shar, _d;—shar, (d,—1 d, D
eiry d 4 shar; shar,)’
The probability that o,,, is not hit by any of the references emanating from a k-element subset
{oi,0},...,0F} of objects of type ¢, all of whose A; attributes are defined, is:

d—k d;
<slzar,»)/ (shar,)' ®)

For 0 <i <j < n we now define RefBy(i,], k), which denotes the number of objects in ¢; which lie
on at least one (partial) path emanating from a k-element subset of L

k »fac d, e .
ej[(shar, >/<shar,.>:| irj=i+l

RefBy(i, j, k) = N 9)
e Refo(l9J - lsk)Ri, -1 dj» 1 else
/ shar; _, shar; _

where fac = P, if the k elements are uniformly distributed among the elements of ¢, and Jac =1
if the k elements are uniformly distributed among these elements having a non-NULL A
attribute.

Further the probability, denoted Presy (i, j), that a path between any one object in t;, and a
particular object o, in 1; exists for 0 <i <j < n, is derived as:
0 ifi=j
Pros, (1.7) = { Re/By (1, J, d)) |

]

Let Ref(i, j, k) denote the number of objects of type 1, which have a path leading to some element
of a k-element subset of objects of type t; for 0 <7 <j <n. This value can be approximated as:

(63 R

Ref(i,], k) = (1n

Ref(i +1,j, k)P, €y
j i+ l
d[< Ji)/(f)] o

where fac = P, ,, if the k elements are uniformly distributed among the elements of ¢, and fac = 1
if the k elements are uniformly distributed among those elements referenced by ¢;_,.

Let Pg,(i, j) be the probability that a given object in ¢, has at least one path leading to a particular
object in ¢;. Then ‘

(10)

0 if i=j
PRef(i,j) = Ref(i,j, ej)
¢

(12)

else

We will sometimes use the “two-parameter” versions of RefBy and Ref, which are defined as
follows: '

RefBy (i, j)-=RefBy (i, j, c;) 13
Ref(i, j)=Ref(i, j, c;). (14)
The number of paths between the objects in t; and the objects in f; can be estimated By
path(i, j) = Ref(i, j, ej)jlj:f: ’ (15)
or equivalently

j=1
path(i,j) = RefBy(i, j, d) [] shar,. (16)

I=i

Access support relations 129

4.2. Analysis of cardinalities and storage costs of access support relations

We now present the cardinality results for the different extensions. The access support relation
partitions #,. 4,. - - -. A,J%” which hold all the paths from t; to t; of the corresponding extension
X, have the following cardinalities:

#li410 AJL = RefBYO,0) P T (17)
#[to. A A5 = :; € Preay (0,)P (i, i + k + 1) ’:]j If,, (18)
#[to. 4y An]]ggiéfy,:z & i PulG—k =1, ~Pats ~k,n)pj=1jlikf‘, 09
#[to- A, A,]50 =:zljlzk Pyl = 1, 1P, (LI + Kk + 1)I11k:[:'j;, (20)

where the subsequently defined probabilities have been used.
Let P, (i,j) denotet the probability that a particular object of type ¢ is not ““hit” by any path
emanating from some object in ¢, for 0 <i <j <n:

_PRefo(i’j) 0<l <j<n
else ’

Py(i.j) = {} @)

Let P, (i,j) denote} the probability that an object of ¢, has at least one path to some object of
type 4,_, but no path to an object of type Lfor0<i<j<n:

sy _ VP PL(,J) 0<i<j<n
Prb(l’j) - {1 Clse (22)
with
7f: oY (1 - PRef(i,j—l))Pref(irj - l) 0 <i <.]
Prb(l’j) - {l Clse . (23)
The approximate number of tuples per page in the access support relation [[z,. 4,. - -. A,,]](X""' Vis
. PageSize
tpptid) = . 24
wp [OIDsizeU it 1)] @
Note that this parameter is not dependent on the extension X.
The approximate number of pages needed to store the ASR [t Ay . 4,]8D is:
. A A
appr = | 2llo A AL (25)
atpp(hl)

4.3. Example cardinalities of access support relations

Subsequently, we graphically demonstrate two results for application . characteristics that we
deem not untypical in the engineering domain. However, the reader should bear in mind that the
size comparison of different access support relation extensions and decompositions does not permit
any conclusions as to the performance of the respective physical design. The two results are merely
included to give the reader some “feeling” about comparative storage costs.

4.3.1. Comparison between extensions and decompositions. In this experiment we want to
compare different extensions and decompositions of the access support relation size for a fixed
application characterization, which is listed in Table 3.

tib: left-bound.
$rb: right-bound.

130 ALFONs KEMPER and Guipo MOERKOTTE

Table 3
Application characteristics
n 4
Number of objects [I [cy A
1000 5000 10,000 50,000 100,000
-Number of objects with d, d, d, d, d,
defined 4, , , attribute 900 4000 8000 20,000 —
Fan-out S A) N Ja
2 2 3 4 —
No dec
[si
1000 [—
800
& 600
o
©
Q
400
200
0

Canonical Full Left Right

- Fig. 4. Comparison of access support relation sizes.

The comparison of storage costs (for non-redundant representation) is graphically plotted in
Fig. 4. In this example application there are few objects at the “left” side of the path which causes
the canonical and the left-complete extensions to be drastically smaller than the right-complete and
full extension. It can be seen that—for this application—the binary decomposition reduces storage
costs by a factor of 2.

Table 4
Application characteristics
n ' 4
Number of objects [I [[A
10,000 10,000 10,000 10,000 10,000
Number of objects with dy d, d, dy d,
defined 4, , attribute 2500---10* 2500---10* 2500---10° 2500---10* —
Fan-out fo A N N A
2 2 2 2 —
10,000
R
1000 e e
r‘ﬁ”
» _.fﬂ‘ozt
[ml A
o ,x‘x A
o 100 xr"_+—+ 7
Q +-t ¢ Canonical
3 a Full
x Left
10 + Right

| I] | J
1
2000 4000 6000 8000 10,000 12,000

d, (05 i< 3)
Fig. 5. Varying the number of not-NULL attributes.

Access support relations 131

4.3.2. Varying all d; parameters. In the subsequent experiment we want to demonstrate the effect
of varying the number of defined attributes, i.e. simultaneously varying d; for (0 <i < 3), while
keeping the number of objects and the fan-out fixed (Table 4). The parameters d,, d,, d, and d,
were simultaneously increased, i.e. the values are kept identical. The plot in Fig. 5 shows the access
support relation sizes for all different extensions under no decomposition. As the d, values increase
the sizes of the different extensions grow proportionally. As the d, values approach the ¢, values,
the storage costs for all different extensions approach each other—because then (almost) all paths
originate in f; and lead to 1,.

5. QUERY PROCESSING

In this section we evaluate the usefulness and the costs of the different extensions and
decompositions to query processing.

5.1. Kinds of queries

To compare the query evaluation costs we consider abstract, representative query examples of
the following two forms:

5.1.1. Backward queries. In this query expression the objects o, of type r, are retrieved based on
the membership of some other object o, of type t; in the path expression 0,. 4;,,." - -. 4;.

QU (bw):=range o;:1,0;:
retrieve o,
where o;ino,. 4, .- . 4; and Pred(o;)

L

Here we assume that Pred(o;) is some predicate that is satisfied for only one (unique) object o, of
type 1. In our cost analysis the cost to find this one object is neglected. We assume, for example,
that a direct reference to o, is given. '

5.1.2. Forward queries. Forward queries retrieve objects of type 2 which can be reached via a

path emanating from some given object o; of type 1,.

QUI(fw)=range o;:1,0;: 1
retrieve o;
where o;in 0;. 4;, (. - -. A; and Pred(o,)

Again, Pred(o;) is assumed to be a predicate that uniquely identifies one object of type ¢,.
5.2. Estimating query costs

In the following estimates we will frequently use a well-known formula. Yao [23] has determined
the number of page accesses for retrieving k out of n objects distributed over m pages, where each
page contains n/m objects. This number, denoted as y(k, m, n), is:

ik, m,n)=[m<l—nn(l_l/m)—i+1)>—|. (26)

it n—i+1

5.2.1. No access support. We generally assume that objects are clustered dependent on their type.
Thus, the number of pages needed to store all objects of type ¢, is estimated as:

C:
= | 27
oP: [(PageSize /size,-)—| @7
Forward Query The cost of evaluating a forward query Q%/)(fw) without any access support is
given as: ' :
j—1
Onas® (fwy=1+ 3 y("RefBy(i,],1)],0p;,¢c)) (28)
I=i+1

This cost is deduced as one page access to retrieve the object o, plus the access to all objects of
type £,(i </ <j) that lie on a path originating in o,.

18 1772—B

132 ALFONs KEMPER and GUIDO MOERKOTTE

Backward query Backward queries induce the following cost—under the assumption that no access
support exists:

Qnas“)(bw) = op, + jil Y RefBy(i, 1, d;), opy,c;) (29)

I=i+1
~ Basically the backward query is evaluated by an exhaustive search. All objects of type ¢, for
(i <1 <j) that are connected with any object of type r, have to be inspected, i.e. RefBy(i, 1, d))
objects have to be retrieved for each type ¢, (i <! <j).
5.2.2. With access support. In the following we will need the parameter B}, which is the
fan-out of the B*-tree. This parameter can be derived as:

Bf, = (PageSize |(PPsize + OIDsize)). (30)

The height of the B*-tree—not considering the leaves—for the relation [t 4, A s
denoted At§/). We will omit the derivation of the height—in realistic database applications the
height will mostly be 2.

From the height and the fan-out of the B*-tree we can deduce the number of (internal) pages
(without leaves) in the B*-tree for the relation [t 4,.---. 4,]¢", which is denoted pglii),

The number of leave pages of the B*-tree per object of type ¢, in the access support relation
depends clearly on the extension. It can be estimated as follows:

nipfy) = Fij f/’;] 31)
nipil) = PngB—?(%%PAI] (32)
nlpi) = FF‘(IIP(’;’?T] (33)
ripia’ = PRef(i, :;;; @ ,-)] =

For the B* tree for the inversely clustered access support relation the value is denoted Rnlp§”’ and
is derived analogously.

If the B* tree has exactly one intermediate layer of nodes then the cost for a supported forward
query can roughly be approximated as follows: '

Qsup$)(fw, dec) = Y (h,(;‘(,»im)+,,,1p<}..f,+|>)+. Y (apey +

iys iy 4| € dec iy iy 4 1 € dec

(g=i<ig 4 (i <i<iy 1)

) L0+ y (T RefBy (i, iy 1), pgle-ie s — 1, (pg'p-=+0 = B +p

igly 4 € dec

(i<+i,l<j)

Y RefBy (i, iy, 1) nlp'-*= +Vatpp s +0, apl-=+0, # [1y. Ay - - 4,] +0)).

' (35)

In this formula we are given a decomposition dec:=(0=14,,1i,...,i,=n). Depending on this

decomposition the forward query Q%(fw) is evaluated. We distinguish two cases:

1. The first sum covers the case that i = i, for some 0 < « < k. In this case only one path through
the B*-tree has to be traversed and the leave pages for one value (nlpS-'=+) are retrieved.

2. The second sum handles the special case that i is not the left border of some decomposition,
i.e. there is no i, e dec such that i, =i. All pages of the access support relation partition
[to- A;.- . 4,]¢+v that covers i have to be inspected. This number equals ap{s-i+),

Finally, the third sum accounts for accessing the partitions that lead to J- Within each partition
[to.A4,. . 4,]% %+ we have to retrieve

e the root of the B+-tree : .
o the intermediate pages of the B*-tree that contain (the intervals of) the RefBy(i, i,, 1) object
identifiers of type ¢, .

Access support relations 133

1000
100
»
0
o
e
@
=]
ST
No support Cononical Full Left Right
Fig. 6. Query costs for a backward query.
Table 5
Application characteristics
n 4
Number of objects [[3) [€ A
100 500 1000 5000 10,000
Number of objects with dy d, d, dy d,
defined 4, _ | attribute 90 400 800 2000 —_
Fan-out fo N f Sy A
2 2 3 4 —
Size of objects sizey size, size, size, size,
500 400 300 300 100
e the data pages of the access support relation partition [#,. 4,. - . 4,]§+? that contain the

RefBy(i, i,, 1) object identifiers of type ¢,
The costs of a backward query are derived analogously (see Ref. [24]).

5.3. Sample results

5.3.1. Query costs in comparison. Figure 6 visualizes the cost of a backward query of the form
Q©®9(bw) for the application specific parameters shown in Table 5. The access support relations
were either decomposed into binary partitions (bi) or non-decomposed (no dec). As expected, the
query costs for non-decomposed access support relations are lower than for the binary decomposed
relations—the reason being that the semi-join across partitions is avoided.

1000 =
3 e
C /,/
[v+ No support
100 ¢ Canonical
@ - s Full
8 C » Left
b [~ s Right
b 3
o
&
10 E_ —m——u o .
E ——— 00— ——0——0
4 L I 1 1 J

0 200 400 600 800 1000
' Object size

Fig. 7. Query costs for a backward query under varying object size.

134 . AvLrons KEMPER and GUIDO MOERKOTTE

Table 6
Application characteristics

n 4
Number of objects € ¢ c € [

100 500 1000 5000 10,000
Number of objects with dy d, d, d, d,
defined 4, _ , attribute 90) 400 800 2000 —
Fan-out fo A N fi fa

2 2 3 4 —
Size of objects size, size, size, sizey size,

100---800 100---800 100---800 100---800 100---800

5.3.2. Query costs depending on object size. Figure 7 shows the cost of a backward query of the
form Q®9(bw) depending on the size of the stored objects, i.e. the parameter size, is simultaneously
varied for (0 < i < 4) (Table 6). The access support relations are decomposed into binary partitions.
As can be seen in Fig. 7 the object size does not influence the query costs for supported queries
(as expected). Only the cost of non-supported queries grows proportional to the object size. Note,
that in Fig. 7 the values for full, left, and right extensions overlap (marked with filled squares).

5.3.3. Which queries are supported? As described before, not all queries are supported by certain
extensions of the access support reation.. Also, the decomposition of the access support relations
has a major effect on the cost of a query. For demonstration, let us use the application
characteristics shown in Table 7.

The plot in Fig. 8 shows the query costs of a backward query of the form: QI(bw). We
computed the results for two decompositions: (1) the decomposition into binary partitions and
(2) the non-decomposed representation. From our preceding discussions we know that only the
left-complete and the full extension of the access support relation can possibly be used to evaluate
the query. It turns out, that the evaluation utilizing the full/left-complete, non-decomposed access
support relations are costlier than the non-supported evaluation. The reason is that the rather large
access support relations have to be exhaustively searched under no decomposition, i.e. all pages
have to be inspected. This is due to the lack of a cluster index on OIDs of type t;—remember, the

Table 7
Application characteristics

n 4
Number of objects [¢ ¢ [¢,

10 104 104 10 104
Number of objects with dy d, d, dy d,
defined 4, | attribute 10---10* 10--- 104 10--- 104 10--- 100 —
Fan-out fo fi f N A

2 2 2 2 —
Size of objects size size, size, sizey size,

120 120 120) 120 120

10,000

1000

100

Query cost Q(0.3)
>

1
Canonical Full Left Right No support

Fig. 8. Query costs for a backward query Q9%bw).

Access support relations 135

Table 8
Application characteristics

n 4
Number of objects ¢ ¢ ¢ [A

400,000 400,000 400,000 400,000 400,000
Number of objects with dy d, d, dy d,
defined 4, , attribute 10 100 1000 100,000 —
Fan-out fo A f f S

10---100 10---100 10---100 10---100 —
Size of objects size, size, size, sizey size,

120 120 120 120 120

access support relations are only clustered at partition boundaries (cf. Section 3.3). Therefore, if
the database designer anticipates the frequent occurrence of such a query the non-decomposed
extension of the access support relation should be avoided.

5.3.4. An application favoring canonicalleft over full|right. The parameters shown in Table 8
describe an application that favors canonical and left-complete extensions over full and right-
complete extensions of the access support relation. The evaluation costs of a backward query
Q®“(bw) for varying fan-out values are plotted in Fig. 9.

6. MAINTENANCE OF ACCESS SUPPORT RELATIONS

For the different extension and decomposition possibilities we now consider the dynamic aspect
of maintenance. Of course, updates in the object base have to be reflected in the access support

relation extensions. The problem of automatic maintenance of the access support relations is
addressed and the cost analyzed.

For notational convenience we will assume that all attributes 4,, . .., A, in the path expression
to. A).---. A, are set-valued, i.e.:

type t,_is ..., 4;:{t},..]

In the subsequent discussion we will denote objects of type ¢, as o, for (0<i<gn)

Then only the following two primitive update operations have to be considered for the
maintenance of the access support relations:

ins' = o,_,.insert_A,(0,)
del' = o,_\.remove_A,(0,)

In statement ins' a new object is inserted into the set associated with attribute A; of object o,_,.
In statement del’ an object o, is removed from the set. All other—higher-level—update operations
can be decomposed into these primitives.

100,000
P i
10,000
o Fuli
I ¢ Canonical
g 1000 x Left
- + Right
® ¢ No support
) 100
(@]
,;.,—e—_—r;?—‘:?:‘?ﬁg
10 - e
— e ————— =3
1 I I 1] J
0 20 40 60 80 100

Fan
Fig. 9. Cost of a backward query Q4 (bw).

136 ALFONs KEMPER and Guipo MOoERKOTTE

6.1. Terminology
For describing the maintenance algorithms we need a few preliminary definitions:

Definitions 6.1. (Direct predecessors and direct successors)
The set of direct predecessors DPY- (and successors DS 4; 41 Tespectively) of an object o, of type
with respect to the attribute A; and the type t,_,(w.r.t. the attribute A1) is defined as follows:

DP%,_l(oi)={oi—lloieoi—l'Aifor 0,y of type t,_,}
DS, (o) = {0,41)0:4, €0,. A, for o,,, of type i)} d

As long as no misunderstandings are possible we will often drop the super-and/or the subscripts.

In the above definition we have to note that all instances of subtypes belong to the extension
of a type—therefore substitutability of subtype instances in place of supertype instances is implicitly
accounted for.

The direct predecessors and Successors, respectively, are computed as follows:

o Computation of the direct predecessors DP-1 (o)

DPi-1(0,):=0; ! initialize to the empty set
foreach (o, _, in ext(t,_,))
if (0,in 0;_,. 4))
DPi-1(0):=DP4-1(0) U {0,_};

o Computation of the direct successors DS 4 +,(0)

DSA, . |(0i):=0i' Ay
It should be obvious that the computation of the direct predecessors incurs much higher cost
(in the order of the cardinality of the extension of type #;_,) than the simple look-up of the direct

successors.

Definition 6.2. (Predecessor-/successor-relation)

The predecessor relation PR'—a set of (i + 1)-ary tuples of object identifiers, which represent
reference chains leading into the object o; w.r.t. the given path expression ty. A, .- - . A,—and the
successor relation SR' of (n — i + 1)-ary tuples representing reference chains emanating from the
object o, are defined as Jollows:

PRY(0))={(NULL, ... NULL, id(oy), . .., id(o;_,), id(0,))|
(k =0 or DP(0,) =0) and 0, 1€ DP(o)) for all k <j < i}
SR'(0;) = {(id(0,), id(0,, ,), . . . »id(o,), NULL, ..., NULL)|
(s =n or DS(0,) = @) and 0;,€ DS(0;_,) for all i <j <s} O

The specification of the position 7 within the path expression #,.4,.- -+ .A, is relevant since the
same object type can occur at different’ positions within a single path expression.

PR(0;) denotes the predecessor relation which contains only left-complete paths, i.e. only those
paths that originate in an object o, of type ¢, and lead to o,—in this case k =0 has to hold in
the terminology of the above definition. SR'(0,) is defined analogously as the successor relation
containing only right-complete paths.

6.2. Maintenance upon object insertion
We will now sketch the maintenance algorithm for the update operation (ins’):
0;_ . insert_A,(0,);

We can extend the definition of predecssor and successor relations to argument sets in
a natural way: PR'(M)=u,) PR(0,) and PR'@):={(NULL,. .., NULL)}. Analogously,
SR (M)=u, .\ SR'(0;) and SR'®)={(NULL, ..., NULL)}.

Furthermore, in the specification of the (recursive) update algorithm we will implicitly assume
the following: PR%0y)={(id(0,))] and SR™(o0,)={(id(0,))}.

Access support relations 137

6.2.1. Full extension: X = full.

1. Compute the predecessor relation of o;_,

PR"'(o,_,)=={nS° ‘‘‘‘‘ S,_l(asl__lé,,,(ol_l,[[to.A,. A) ifitis #0
{(NULL, ... ,NULL,id(o,_,))} else
2. Compute the successor relation of o,
SR"(o,-)=={ns’ ‘‘‘‘ 5, Osmiaoplto- Ar. - A) ifitis#0
{(id(0)), NULL, ... ,NULL)} else
3. Update the ASR
lto. Ay A jr=[te- A4, - A,] sur v (PR~ "(0,_,) x SR(0,))

4. Delete obsolete information

The following information

Os,_\~itto,) ns,=nuelto- Ar.++ . A,] sy and s, =nuLL n s;=idoplto- A1+ Ay]

has to be removed from the ASR—if the sets .are non-empty.

In the maintenance of the full extension all update information, i.e. the predecessor as well as
the successor relation, can be derived from the access support relation. Thus, no search within the
object representation has to be performed. The cross product of the predecessor and the successor
relation is inserted into the access support relation. Subsequently, some tuples have to be removed,
which may have become obsolete due to step (3). Note that the various steps of the algorithm
should be “meshed” in order to optimize the performance—for better clarity they are separated
in this description.

6.2.2. Left-complete extension: X = left. We will now see, that the update information necessary
to maintain the left-complete extension may not be available within the access support relation.

1. Compute the left-complete predecessor relation of o;_,
PRi-l(oi—l)'=nSO s,_,(Us,_.=id(o,»_,)l[to-g4|- T An]]ltﬁ)

Note, that for (i — I = 0) implicitly PR%0,):={(id(a,))} is assumed.
If PR ~'(0;_,) =0 holds, skip steps (2), (3) and (4), because no update of the access support
relation [1,. A4,. -+ . A,], is necessary.

2. Compute the successor relation of o,

ms,. .5, (0,2 iaopllo- A1 -+ Ay]s) if this is # 0
{(id(0))} x SR"UDS,,, (o)) else

Again, for i = n the exception SR"(0,)={(id(0,))} is implicitly assumed.

SR"(o,-)=={

3. Update the access support relation

I]:to. A| PR An]]leﬁ:=[[10‘ A] PN An]]lefl |V (PRi_l(oi_|) X SRI(O,-))
4. Delete obsolete information
The set of tuples

O, _\ =ido, _) A s,-/vuu_l[to- Ay An]]left

has to be removed from the ASR—if it is not empty.
Example 6.3. Consider the object base shown in Fig. 10. An object o, is identified by the OID id,
(1 i <10). Furthermore, assume that the access support relation [[to.A,.Az.A3.A4]],,,, exists.

The update operation o.insert_A,(o,) has to be reflected in the given access support relation
[t A,. Ay Ay. A

138 ’ ALFoNs KEMPER and Guipo MoERrkOTTE

object type to 5 t; 3 ty

id idy idg idy ids

A]i-'—’ AQI—_> A3Z————> A4:——.. A5:

idg idg idg

Ay i 94— | A3 d— Ag

Fig. 10. Sample object base extension.

The predecessor relation of 0 is '1;72"(06) = {(idy)}. In general, the left-complete predecessor
relation is always derivable from the left-complete extension of the ASRt—or applying the
exception of i =0, as above. '

The computation of the successor relation SR'(0,) yields the empty set after inspecting the ASR.
Thus, the direct successors of 0, have to be “computed” by looking up the object representation
of 0,. This yields the set {03, 05}.

The direct successors of o4 have to be looked up in the object base, whereas the successor relation
of oy is derivable from the access support relation.

6.3. Maintenance costs

Let us now analyze the maintenance costs of the insert operation (ins' = 0;_,. insert_A,(0,)) on
the access support relations for the path expression t,. 4,. - - . A;.--- . A,. For simplicity, we
assume that for 0 <k,i <n,i#k either 0,_, is not of type t,_, or Ay # A;. This simplifying
condition prevents an object insertion to affect different positions in a single path expression.
It follows that o, has to be of type 1,.

The update costs consist of three parts:

1. the costs for updating the set associated with attribute A; of object o,_,

2. searching the identifiers for the successor- and predecessor relations that have to be updated,
and

3. updating the access support relations.

The cost for updating o,_,. A, amounts to 3, i.e. one page access to retrieve the object
representations of o, , and o,_,. 4,; and one page access to write the modified set-structured
object o,_,. A, back to secondary storage.

The next step consists of materializing the relations PR~ '(0;_,) and SR'(0,), depending on the
selected extension of the access support relations. Here we only consider the costs encountered if
the search has to be performed in the object representation, i.e. if SR(0;) and PR'~'(0,_,) cannot
be materialized from the access support relations.

If we have a full extension we do not need any search in the data since all necessary information
is contained in the access support relations.

If we have a left-complete extension we have to search the paths from object o, in direction ¢,
to materialize SR'(0,). But this is only necessary if o,_, is referenced by some object in t,, and 0;
is not already contained in the access support relation, i.e. it was not yet referenced by some path
originating in an object in t,. Otherwise, SR'(0,) is either contained in the access support relations
or not needed. :

The cost for searching in the case of a right-complete extension can be approximated
analogously. A search in the data to create PR~ Yo0,_,) is only needed if o; was already present
in the access support relation and if 0;_, is absent. Only under this condition one (or more) new
right-complete paths have to be added to the access support relations.

Note, that this does not hold for the right-complete and canonical extension of the access support relations.

Access support relations 139

Table 9
Application characteristics

n 4
Number of objects I c, [¢y [A

1000 5000 10,000 50,000 100,000
Number of objects d, d d, d, d,
defined 4, attribute 900 4000 8000 20,000 —
Fan-out fo N h f A

2 2 3 4 .
Size of objects size size, size, sizey size,

500 400 300 300 100

10,000

1000

100

Update costs

10

LB 1y

Canonical Full Left Right No support

Fig. 11. Update costs for a fixed application profile.

In the case of a canonical extension we have to search for a complete path in both directions.
Since a forward search is cheaper than a backward search we start therewith to set up SR(o,).
The forward search from o, to ¢, has only to be performed if there does not already exist a complete
path through o;. We start the backward search to materialize PR~'(0, — 1) only if we have found
a connection from o to t,. The backward search itself is only necessary if there does not already
exist a complete path through o,_,.

The derivation of the cost formulas is beyond the scope of this paper and can be found in
Ref. [24].

6.4. Sample results

6.4.1. Update costs for fixed application characteristics. We compare update costs for different
access support relation extensions and decompositions on the basis of the application profile shown
in Table 9. The update costs for an update operation ins? are plotted in Fig. 11. The access support
relations are, alternatively, in binary decomposition or non-decomgposed. Since the update is at the
right-hand side of the path expression, the left-complete extension under binary decomposition is
very much superior to the right-complete extension. For an update ins® the right-complete extension

Table 10
Application characteristics

n 4
Number of objects [N IS €, € €4

1000 5000 10,000 50,000 100,000
Number of objects with dy d, d, dy d,
defined A, , attribute 900 4000 8000 20,000 —
Fan-out Jo N N N fi

2 ! 1 4 .
Size of objects size, size, size, sizey size,

500 400 300 300 100

140 ALFONs KEMPER and GuIDO MOERKOTTE

No dec

10,000

Update costs

Canonical Full Left Right No support

Fig. 12. Update costs for a fixed application profile.

would be drastically better, whereas the canonical extension is problematic under any update
because a search in the data is always necessary.

6.4.2. Update costs for another fixed application characteristics. Let us, for comparison, show a
slightly different application profile (Table 10). The update costs for an update operation ins® are
plotted in Fig. 12. Again, the update costs of the left-complete and full extension are almost
comparable. For non-decomposed access support relations the cost is extraordinarily high because
of the high cost for searching in the non-clustered information.

6.4.3. Update costs under varying object size. Consider the application-specific parameters
shown in Table 11, within which we will simultaneously increase the sizes of objects of all types
within the interval 100 ... 800. The plot in Fig. 13 visualizes the effect of varying object sizes on
the update costs of ins'. The access support relations are in binary decomposition. We see that the
update costs for canonical and right-complete extension grow as the object sizes increase. This is
due to the high search overhead within the data (object representation) that has to be performed.
Remember, that in the case of canonical and right-complete extension an exhaustive search may
become necessary to establish the paths that lead from 1, to the object being updated. For the
left-complete extension only a forward search is needed which is only marginally affected by
increasing object sizes.

Table 11
Application characteristics

n 4
Number of objects g ¢ [I ¢

1000 5000 10,000 50,000 100,000
Number of objects with dy d, d, dy d,
defined 4, , , attribute 900 4000 8000 20,000 —
Fan-out fo N N h /fa

2 2 3 4 -
Size of objects sizey size, size, sizey size,

100---800 100---800 100---800 100---800 100--- 800

o Canonical
¢ Full

o Left

¢ Right

= No support

1000

IIITTI'I'II

2

S 100

© 3

P E D/O/QMA—Q

4] =

g 10 o-—06—0—0—0——0—0—=0

> E
:]] {]]] L

1] |] J
0 200 400 600 800
Object size

Fig. 13. Update costs for varying object sizes..

Access support relations 141

Table 12
Application characteristics

n 4
Number of objects [N ¢ [€ [

1000 5000 10,000 50,000 100,000
Number of objects with dy d, d, dy d,
defined 4, | attribute 900 4000 8000 20,000 —
Fan-out fo h f f Ja

2 2 3 4 —
Size of objects size, size, size, size, size,

500 400 300 300 100

7. COSTS OF TYPICAL OPERATION MIXES

7.1. Describing an operation mix
In our analytical cost model an operation mix M is described as a triple

M = (Qmi.\'a Umi,n qup)
Here, Q,,, is a set of weighted queries of the form:

Qmix = {(Wl H ‘]1) LA (Wp, qp)}

where for (1 <i < p) the g, are queries and w; are weights, i.e. w; constitutes the probability that

among the listed queries in Q,,, g; is performed. It follows that Z?_,w;=1 has to hold.
Analogously, the update mix U,,, is described. Finally, the value P, determines the update

probability, i.e. the probability that a given database operation turns out to be an update.

7.2. Some sample results

7.2.1. Update mix under binary decomposition. The application profile shown in Table 12 is used:
The query mix Q,,. consists of:

Qi = {(1/2, Q“Nbw)), (1/4, QM bw)), (1/4, Q" V(fiw))}

15

10000

X

E

c

8 -0~ canonical
g 100 o ful

§.] ¥ joft

5 ~+ right

§ % no support
)

1 Y T v T v T T T —
0,0 0,2 0,4 0,6 0,8 1,0

update probabliity

Fig. 14. Operation mix for binary decomposition.

142 ALFONs KEMPER and Guipo MoERrRkoOTTE

10000

1000
X
E
c
2
s 100-5
5]
2]]
o
Q L
10 -0~ canonical
o full
¥ |oft
=+ right
& no support
1+ ¥ T Y T v T ¥ T A |
0,0 0,2 0,4 0,6 0,8 1,0

update probability
Fig. 15. Operation mix for the decomposition (0, 3, 94).

The update mix consists of:
Unie = {(1/2, ins?), (1/2, ins%)}

This means that, when a query is performed, any one of the queries is chosen with the specified
probability. The same holds for update operations.

Figure 14 shows the costs for different update probabilities P, ranging between 0.0..- 1.0.

It can be seen that for an update probability less than 0.3 the left-complete extension performs
as well as the full extension. The break even point between no support and full extension is at an
update probability of 0.998 (not shown in the diagram),

7.2.2. Non-binary decompositions of the access support relations. The experiment was run again
for the (0, 3, 4) decomposition of the access support relations. The result is shown in Fig. 15.

7.2.3. Comparison: left-complete vs full extensions. For the application characterization shown
in Table 13 the anticipated costs for a database operation mix consisting of the following queries
and updates were computed:

Q... = 1(1/3, QN bw)), (1/3, Q¥ bw)), (173, Q" I(fw))}
Unix = {(1/3, ins%), (1/3, ins®), (1/3, ins*)}.

In Fig. 16 the costs for. the operation mix under left-complete and full extension of the access
support relations are plotted for two different decompositions: (1) binary decomposition
0,1,2,3,4,5) and (2) the decomposition 0, 3,4,5).

Table 13
Application characteristics

n 5
Number of objects [I ¢ cy A [

1000 1000 5000 10,000 100,000 100,000
Number of objects with dy d, d, d, d, dy
defined 4, attribute 100 1000 3000 8000 100,000 —
Fan-out S A S i /i fs

2 2 3 4 10 —
Size of objects sizey size, size, sizey size, sizeg

600 500 400 300 300 100

Access support relations 143

13,5
25 A
X
=
c
L
&
g 154
o
.-
°
% & full-binary
3 -~ left-binary
& {ull (0,3,4,5)
-~ left (0,3,4,5)
5 v T . r v T v ; v —_
0,00 0,20 0,40 0,60 0,80 1,00

update probability

Fig. 16. Operation mix for full and left-complete access support relations.

7.2.4. Comparison: right-complete vs full extension. The application profile shown in Table 14
is being used.

For this application characterization the normalized costs for a database operation mix
consisting of the following queries and updates were computed:

Qi = {(1/2, Q2(bw)), (1/4, Q"I(bw)), (1/4, Q*(bw))}
Umix = {(l’ inss)}

Figure 17 visualizes the costs for the operation mix under the following decompositions of the
right-complete and full extension:

1. the binary decomposition (0, 1,2, 3, 4, 5),
2. the decomposition (0, 3, 5).

It turns out that the latter decomposition is always superior. For update probabilities less than
0.005 the right-complete extension is even better than the full extension under this particular
decomposition. This break-even point is emphasized in the upper plot of Fig. 17.

Table 14
Application characteristics

n 5
Number of objects ¢ 4 [[A s

100,000 100,000 50,000 10,000 1000 1000
Number of objects with d, d d, dy d, dy
defined 4, _, attribute 100,000 10,000 30,000 10,000 100 100
Fan-out S fi h 5 A Js

1 10 20 4 1 -
Size of objects size, size size, sizey size, sizes

500 400 300 200 700

144 ALFONs KEMPER and Guipo MOERKOTTE

600 -

500 A

X

=

= 400

2

®

§ 300 +

5 < full (0,3,5)

5 200 -~ right (0,3,5)

8 & full-binary
-0

right-binary

v v T v T v
0,00 0,05 0,10 0,15 0,20
update probability

Fig. 17. Isolating right-complete and full extension.

8. CONCLUSION AND FUTURE WORK

In this work we have tackled a major problem in optimizing object-oriented DBMSs: the
evaluation of path expressions. We have described the framework for a whole class of indexing
structures, which we call access support relations. The primary idea is to materialize such path
expressions and store them separate from the object (data) representation. The access support
relation concept subsumes and extends several previously published proposals for access support
in object-oriented database processing,

Access support relations provide the physical database designer with design choices in two
dimensions:

1. one can choose among four extensions of the access support relation (canonical, full, left- and
right-complete extension)

2. for a fixed extension one can choose among all possible decompositions of an access support
relation

It is not possible, to generally predict the best possible design choices: this is highly application
dependent. Therefore, a complete analytical cost model was developed which takes as input the
application-specific parameters, such as number of objects, object size, fan-out, number of
not-NULL attributes, etc. Based on the application characteristics the analytical model can then
be used to compute for all (feasible) design choices the expected cost (based on secondary page
accesses) of pre-determined database usage profiles, i.e. envisaged operation mixes. From this, the
best suited access support relation extension and decomposition can be selected. The first step in
the direction of such a comprehensive cost model for supporting the physical object base design
has been presented in this paper. : g

From our cost evaluations for a few (sometimes contrived) application profiles it follows that
an object-oriented database system that allows associative access should provide the full range of
options (extensions and decompositions). It is not generally predictable for a whole application
domain which extensions and decompositions will be optimal—this decision is highly application
and operation-mix dependent.

The access support relation manager as well as the cost model have been implemented on an
experimental basis. First benchmarks with the access support relation manager support our

Access support relations 145

analytical analysis presented in this paper. So far, we have used the cost model to determine
operation costs for some application characteristics that we deemed typical as non-standard
database applications. However, in a “real” database application one should periodically verify
that the once envisioned usage profile actually remains valid under operation. Therefore, the cost

For this purpose we developed a rule-based query optimizer for GOM that generates a query
evaluation plan which exploits existing access support relations [20]. The analytical cost model is
being incorporated into the query optimizer for comparing the evaluation costs of different
alternative evaluation plans,

Acknowledgements—This work was partially supported by the German Research Council DFG under contract number
SFB 346. Chin Chen’s help in refining the original cost model is gratefully acknowledged.

REFERENCES

{1] A. Kemper and G. Moerkotte. Access suppoort in object bases. In Proc. ACM SIGMOD Conf. on Managemen of
Data, Atlantic City, N.J., Pp. 364-374 (1990).

[2] A.Kemper and M. Wallrath. An analysis of geometric modeling in database systems. ACM Comput. Surv. 19(1), 47-91 .
(1987).

[3] P. Valduriez. Join indices. 4CM Trans. Database Syst. 12(2), 218-246, (1987).

[4] T. Hirder. Implementing a generalized access path structure for a relational database system. ACM Trans. Database
Syst. 3(3), 285-298 (1987).

[5] M. J. Carey, D. J. DeWitt and §. L. Vandenberg. A data model and query language for EXODUS. In Proc. ACM
SIGMOD Conf. on Management of Data, Chicago, Ill., pp. 413-423 (1988).

(6] A. Kemper, C. Kilger and G. Moerkotte. Materialization of functions in object bases. In Proc. ACM SIGMOD Conf.
on Management of Data, Denver, Colo., pp. 258-267 (1991).

{7] D. Maier and J. Stein. Indexing in an object-oriented DBMS. In Proc. IEEE Int. Workshop on Object-Oriented
Database Systems, (Edited by K. R. Dittrich and U. Dayal) Asilomar, Pacific Grove, Calif., pp. 171-182. IEEE
Computer Society Press (1986).

[8] E. Bertino and W. Kim. Indexing techniques for queries on nested objects. IEEE Trans. Knowl. Data Engng, 1(2),
196-214 (1989).

[9] U. KeBler and P. Dadam. Auswertung komplexer Anfragen an hierarchisch strukturierte Objekte mittels Pfadindexen.
In Proc. German Conference on Databases in Office, Engineering and Science (BTW) Informatik - Fachberichte Vol 270,
pp- 218-237. Springer, Berlin (1991).

(10] E. J. Shekita and M. J. Carey. Performance enhancement through replication in an object-oriented DBMS. In Proc.
ACM SIGMOD Conf. on Management of Data, Portland, Ore., pp. 325-336 (1989).

[11] M. Stonebraker, J. Anton and E. Hanson. Extending a database system with procedures. 4CM Trans. Database Syst.
12(3), 350-376 (1987).

{12] T. K. Sellis. Intelligent caching and indexing techniques for relational database systems. Information Systems 13(2),
175-186 (1988).

{13] A. Kemper, G. Moerkotte, H.-D. Walter and A. Zachmann. GOM: a strongly typed, persistent object model with
polymorphism. In Proc. German Conference on Databases in Office, Engineering and Science (BTW) Informatik -
Fachberichte Vol. 270, Kaiserslautern, pp. 198-217. Springer, Berlin (1991).

[14] M. Atkinson, F. Bancilhon, D. J. DeWitt, K. R. Dittrich, D. Maier and S. Zdonik. The object-oriented database system
manifesto. In Proc. of the Int. Conf. on Deductive and Object-Oriented Database (DOOD), Kyoto, Japan, pp. 40-57
(1989).)

(15} S. Zdonik and D. Maijer. Fundamentals of object-oriented databases. In Readings in Object-Oriented Databases,
(Edited by S. Zdonik and D. Maier), pp. 1-32. Morgan-Kaufman (1989).

(16] P. Butterworth, A. Otis and J. Stein. The GemStone object database system. Commun. ACM 34(10), 64-77 (1991).

[17] O. Deux ef al. The story of O,. IEEE Trans. Knowl. Datq Engng 2(1), 91-108 (1990).

[18] W.Kim,J . F. Garza, N. Ballou and D. Woelk. Architecture of the Orion next-generation database system. JEEE Trans.
Knowl. Data Engng 2(1), 109-124 (1990).

[19] C. Lamb, G. Landis, J. Orenstein and D. Weinreb, The ObjectStore database system. Commun. ACM 34(10) 50-63
(1991).

[20] A. Kemper, P. C. Lockemann and M. Wallrath. An object-oriented database system for engineering applications. In
Proc. ACM SIGMOD Conf. on Management of Data, pp. 299-311, (1987).

[21] M. Stonebraker, E. Wong, P. Kreps and G. Held. The design and implementation of INGRES, ACM Trans. Database
Syst. 1(3), 189-222, (1976).

{22] A. Kemper and G. Moerkotte. Advanced query processing in object bases using access support relations. In Proc. Conf.
on Very Large Data Bases (VLDB), Brisbane, Australia, pp. 290-301 (1990).

[23] S. B. Yao. Approximating block accesses in database organizations. Commun. ACM 20(4), 260-261 (1977)

{24] A. Kemper. Zuverlissigkeit und Leistungsfahigket objektorientierter Datenbanken. In Informatik Fachberichte.
Vol. 298. Springer, Berlin (1992).

