
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Resource pool management: Reactive versus proactive or let’s be friends

Daniel Gmach a,*, Jerry Rolia a, Ludmila Cherkasova a, Alfons Kemper b

a Hewlett-Packard Laboratories, Palo Alto, CA, United States
b Technische Universität München, 85748 Garching, München, Germany

a r t i c l e i n f o

Article history:
Available online 20 August 2009

Keywords:
Virtualized data centres
Resource pool management
Enterprise workload analysis
Simulation

a b s t r a c t

The consolidation of multiple workloads and servers enables the efficient use of server and
power resources in shared resource pools. We employ a trace-based workload placement
controller that uses historical information to periodically and proactively reassign work-
loads to servers subject to their quality of service objectives. A reactive migration controller
is introduced that detects server overload and underload conditions. It initiates the migra-
tion of workloads when the demand for resources exceeds supply. Furthermore, it dynam-
ically adds and removes servers to maintain a balance of supply and demand for capacity
while minimizing power usage. A host load simulation environment is used to evaluate
several different management policies for the controllers in a time effective manner. A case
study involving three months of data for 138 SAP applications compares three integrated
controller approaches with the use of each controller separately. The study considers
trade-offs between: (i) required capacity and power usage, (ii) resource access quality of
service for CPU and memory resources, and (iii) the number of migrations. Our study sheds
light on the question of whether a reactive controller or proactive workload placement
controller alone is adequate for resource pool management. The results show that the most
tightly integrated controller approach offers the best results in terms of capacity and qual-
ity but requires more migrations per hour than the other strategies.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Virtualization is gaining popularity in enterprise envi-
ronments as a software-based solution for building shared
hardware infrastructures. Forrester Research estimates
that businesses generally only end up using between 8%
and 20% of the server capacity they have purchased.
Virtualization technology helps to achieve greater system
utilization while lowering total cost of ownership and
responding more effectively to changing business condi-
tions. For large enterprises, virtualization offers a solution
for server and application consolidation in shared resource
pools. The consolidation of multiple servers and their

workloads has an objective of minimizing the number of
resources, e.g., computer servers, needed to support the
workloads. In addition to reducing costs, this can also lead
to lower peak and average power requirements. Lowering
peak power usage may be important in some data centres
if peak power cannot easily be increased.

Applications participating in consolidation scenarios
can make complex demands on servers. For example, many
enterprise applications operate continuously, have unique
time varying demands, and have performance-oriented
Quality of Service (QoS) objectives. To evaluate which
workloads can be consolidated to which servers, some pre-
liminary performance and workload analysis should be
done. In the simple naive case, a data centre operator
may estimate the peak resource requirements of each
workload and then evaluate the combined resource
requirements of a group of workloads by using the sum
of their peak demands. However, such an approach can

1389-1286/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.comnet.2009.08.011

* Corresponding author. Tel.: +1 650 857 4955.
E-mail addresses: daniel.gmach@hp.com (D. Gmach), jerry.rolia@hp.

com (J. Rolia), lucy@viola.hpl.hp.com (L. Cherkasova), alfons.kemper@
in.tum.de (A. Kemper).

Computer Networks 53 (2009) 2905–2922

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet

Author's personal copy

lead to significant resource over-provisioning since it does
not take into account the benefits of resource sharing for
complementary workload patterns. To evaluate which
workloads can be consolidated to which servers, in this
work we employ a trace-based approach [1] that assesses
permutations and combinations of workloads in order to
determine a near optimal workload placement that pro-
vides specific qualities of service.

The general idea behind trace-based methods is that
historic traces offer a model of application demands that
are representative of future application behaviour. Traces
are used to decide how to consolidate workloads to serv-
ers. In our past work, we assumed that the placement of
workloads would be adjusted infrequently, e.g., weekly or
monthly [1]. However, by repeatedly applying the method
at shorter timescales we can achieve further reductions in
required capacity. In this scenario, we treat the trace-based
approach as a workload placement controller that periodi-
cally causes workloads to migrate among servers to con-
solidate them while satisfying quality requirements. Such
migrations [2] are possible without interrupting the execu-
tion of the corresponding applications. We enhance our
optimization algorithm to better support this scenario by
minimizing migrations during successive control intervals.

Though enterprise application workloads often have
time varying loads that behave according to patterns
[3,4], actual demands are statistical in nature and are likely
to differ from predictions. Therefore, to further improve
the efficiency and application quality of service of our ap-
proach, we manage workloads by integrating the workload
placement controller with a reactive workload migration
controller that observes current behaviour to: (i) migrate
workloads off of overloaded servers, and (ii) free and shut
down lightly-loaded servers. There are many management
policies that can be used to guide workload management.
Each has its own parameters. However, predicting and
comparing the long term impact of different management
policies for realistic workloads is a challenging task. Typi-
cally, this process is very time consuming as it is mainly
done following a risky ‘‘trial and error” process either with
live workloads and real hardware or with synthetic work-
loads and real hardware. Furthermore, the effectiveness of
policies may interact with the architecture for the resource
pool of servers so it must be repeated for different
alternatives.

To better assess the long term impact of management
policies we exploit a host load simulation environment.
The environment: models the placement of workloads on
servers; simulates the competition for resources on serv-
ers; causes the controllers to execute according to a man-
agement policy; and dynamically adjusts the placement
of workloads on servers. During this simulation process,
the simulator collects metrics that are used to compare
the effectiveness of the policies.

A case study involving three months of data for 138 SAP
applications is used to evaluate the effectiveness of several
management policies. These include the use of the work-
load placement and workload migration controllers sepa-
rately and in an integrated manner. The study considers
trade-offs between: (i) required capacity and power usage,
(ii) resource access quality of service for CPU and memory

resources, and (iii) the number of migrations. This paper
significantly enhances our recent work [5] by considering
more advanced policies, by introducing new quality of ser-
vice metrics, and by gaining new insights using an analysis
of variance (ANOVA) upon data from more than 10 times
the previous number of simulation runs. The results of
the ANOVA show that for our policies and case study data
thresholds that define underload conditions have a greater
impact on capacity and quality than those that define over-
load conditions. Finally, we found that the tight integration
of controllers outperforms the use of the controllers in par-
allel or separately but in general causes more migrations
per hour.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the workload placement and migration
controllers, management policies, and metrics. The host
load simulation environment is introduced in Section 3.
Section 4 presents case study results. Section 5 describes
related work. Finally, conclusions are offered in Section 6.

2. Management services, policies, and quality metrics

Our management policies rely on two controllers. This
section describes the workload placement controller and
the reactive workload migration controller. The manage-
ment policies exploit these controllers in several different
ways. Quality metrics are used to assess the effectiveness
of management policies.

2.1. Workload placement controller

The workload placement controller has two components.

� A simulator component simulates the assignment of sev-
eral application workloads on a single server. It traverses
the per-workload time varying traces of historical
demand to determine the peak of the aggregate demand
for the combined workloads. If for each capacity attri-
bute, e.g., CPU and memory, the peak demand is less
than the capacity of the attribute for the server then
the workloads fit on the server.

� An optimizing search component examines many alterna-
tive placements of workloads on servers and reports the
best solution found. The optimizing search is based on a
genetic algorithm [6].

The workload placement controller is based on the Cap-
man tool that is described further in [1,5]. It supports both
consolidation and load levelling exercises. Load levelling
balances workloads across a set of resources to reduce
the likelihood of service level violations. Capman supports
the controlled overbooking of capacity that computes a re-
quired capacity for workloads on a server that may be less
than the peak of aggregate demand. It is capable of sup-
porting a different quality of service for each workload
[7]. Without loss of generality, this paper considers the
highest quality of service, which corresponds to a required
capacity for workloads on a server that is the peak of their
aggregate demand.

2906 D. Gmach et al. / Computer Networks 53 (2009) 2905–2922

Author's personal copy

For this paper, we exploit Capman’s multi-objective
optimization functionality. Instead of simply finding the
smallest number of servers needed to support a set of
workloads, Capman evaluates solutions according to a sec-
ond simultaneous objective. The second objective aims to
minimize the number of changes to workload placement.
When invoking Capman, an additional parameter specifies
a target t as a bound for the number of workloads that it is
desirable to migrate. Limiting the number of migrations
limits the migration overhead and reduces the risk of
incurring a migration failure. If it is possible to find a solu-
tion with fewer than t migrations, then Capman reports the
workload placement that needs the smallest number of
servers and has t or fewer migrations. If more changes
are needed to find a solution, then Capman reports a solu-
tion that has the smallest number of changes to find a fea-
sible solution. A data centre operator could choose a value t
based on experience regarding the overhead that migra-
tions place upon network infrastructure and servers. The
case study explores the sensitivity of capacity and quality
metrics to the parameter t.

2.2. Workload migration controller

The migration controller is a fuzzy-logic based feedback
control loop. An advisor module of the controller continu-
ously monitors the servers’ resource utilization and trig-
gers a fuzzy-logic based controller whenever resource
utilization values are too low or too high. When the advisor
detects a lightly utilized, i.e., underload situation, or over-
load situation the fuzzy controller module identifies appro-
priate actions to remedy the situation. For this purpose, it
is initialized with information on the current load situation
of all affected servers and workloads and determines an
appropriate action. For example, as a first step, if a server
is overloaded it determines a workload on the server that
should be migrated and as a second step it searches for a
new server to receive the workload. Furthermore, these
rules initiate the shutdown and startup of nodes. The
architecture of the workload migration controller is illus-
trated in Fig. 1.

The implementation of the workload migration control-
ler uses the following rules:

� A server is defined as overloaded if its CPU or memory
consumption exceed a given threshold. In an overload

situation, first, a fuzzy controller determines a workload
to migrate away and then it chooses an appropriate tar-
get server. The target server is the least loaded server
that has sufficient resources to host the workload. If
such a server does not exist, we start up a new server
and migrate the workload to the new one.

� An underload situation occurs whenever the CPU and
memory usage averaged over all servers in the server
pool drops below a specified threshold. While an over-
load condition is naturally defined with respect to a par-
ticular server, the underload situation is different. It is
defined with respect to the average utilization of the
overall system involving all the nodes. In this way, we
try to avoid system thrashing: e.g., a new server gener-
ally starts with a small load and should not be consid-
ered immediately for consolidation. In an underload
situation, first, the fuzzy controller chooses the least
loaded server and tries to shut it down. For every work-
load on this server, the fuzzy controller determines a
target server. If a target cannot be found for a workload
then the shutdown process is stopped. In contrast to
overload situations, this controller does not ignite addi-
tional servers.

Section 4.4 evaluates the impact of various combina-
tions of threshold values for overload and underload man-
agement. A more complete description of the fuzzy
controller and its rules are presented in [8,3].

2.3. Policies

The policies we consider evaluate whether a reactive
controller or workload placement controller alone is
adequate for resource pool management and whether
the integration of controllers provides compelling
benefits. Our study considers the following management
policies:

� MC: migration controller alone;
� WP: workload placement controller operating periodi-

cally alone;
� MC + WP: workload placement controller operating peri-

odically with the migration controller operating in
parallel;

� MC + WP on Demand: migration controller is enhanced
to invoke the workload placement controller on demand

Workload Migration ControllerServer Pool

Central Pool
Actuator

Central Pool
Sensor Advisor

Fuzzy Controller Fuzzy Logic Rule Set

Rules Defining Light
Utilization and

Overload Thresholds

Needs
Action?

 Yes

Action

Measured
Data

Fig. 1. Architecture of the workload migration controller.

D. Gmach et al. / Computer Networks 53 (2009) 2905–2922 2907

Author's personal copy

to consolidate workloads whenever the servers being
used are lightly utilized; and,

� MC + WP + WP on Demand: workload placement control-
ler operating periodically and the migration controller is
enhanced to invoke the workload placement controller
on demand to consolidate workloads whenever the
servers being used are lightly utilized.

The MC policy corresponds to using the workload
migration controller alone for on-going management. The
workload placement controller causes an initial workload
placement that consolidates workloads to a small number
of servers. The workload migration controller is then used
to migrate workloads to alleviate overload and underload
situations as they occur. The workload migration controller
operates at the time scale that measurement data is made
available. In this paper, the migration controller is invoked
every 5 min.

With the WP policy, the workload placement controller
uses historical workload demand trace information from
the previous week that corresponds to the next control
interval, e.g., the next 4 h. In this way it periodically re-
computes a globally efficient workload placement. The his-
torical mode is most likely appropriate for enterprise
workloads that have repetitive patterns for workload
demands.

The MC + WP policy implements the MC and WP policies
in parallel, i.e., the workload placement controller is exe-
cuted for each control interval, e.g., every 4 h, to compute
a more effective workload placement for the next control
interval. Within such an interval, the migration controller,
independently, migrates workloads to alleviate overload
and underload situations as they occur.

The MC + WP on Demand policy integrates the place-
ment and migration controllers in a special way. Instead
of running the workload placement controller after each
workload placement control interval, the migration con-
troller uses the workload placement algorithm to consoli-
date the workloads whenever servers being used are
lightly utilized.

Finally, the MC + WP + WP on Demand policy is the same
as MC + WP on Demand policy but also invokes the work-
load placement controller after every control interval,
e.g., every 4 h, to periodically provide a globally efficient
workload placement.

2.4. Efficiency and quality metrics

To compare the long term impact of management poli-
cies we consider several metrics. These include:

� total server CPU hours used and total server CPU hours
idle;

� normalized server CPU hours used and normalized ser-
ver idle CPU hours;

� minimum and maximum number of servers;
� the distribution of power usage in Watts;
� CPU and memory resource access quality per hour;

and
� the number of migrations per hours.

The total server CPU hours used corresponds to the sum
of the per workload demands. Total server CPU hours idle
is the sum of idle CPU hours for servers that have work-
loads assigned to them. The server CPU hours idle shows
how much CPU capacity is not used on the active servers.
Normalized values are defined with respect to the total de-
mand of the workloads as specified in the workload de-
mand traces. Note that if normalized server CPU hours
used is equal to 1 and normalized server CPU hours idle
are equal to 1.5 then this corresponds to an average CPU
utilization of 40%.

The minimum and maximum numbers of servers for a
policy are used to compare the overall impact of a manage-
ment policy on capacity needed for server infrastructure.
This determines the cost of the infrastructure. Each server
has a minimum power usage pidle, in Watts, that corre-
sponds to the server having idle CPUs, and a maximum
power usage pbusy that corresponds to 100% CPU utilization.
The power used by a server is estimated as

pidle þ u � ðpbusy � pidleÞ;

where u is the CPU utilization of the server [9].
We define and introduce a new quality metric named

violation penalty that is based on the number of successive
intervals where a workload’s demands are not fully satis-
fied and the expected impact on the customer. Longer
epochs of unsatisfied demand incur greater penalty values,
as they are more likely to be perceived by those using
applications. For example, if service performance is de-
graded for up to 5 min customers would start to notice. If
the service is degraded for more than 5 min then custom-
ers may start to call the service provider and complain.
Furthermore, larger degradations in service must cause
greater penalties.

The quality of the delivered service depends on how
much the service is degraded. If demands greatly exceed
allocated resources then the utility of the service suffers
more than if demands are almost satisfied. Thus, for each
violation a penalty weight wpen is defined that is based
on the expected impact of the degraded quality on the cus-
tomer. The violation penalty value pen for a violation with I
successive overloaded measurement intervals is defined as
pen ¼ I2maxI

i¼1ðwpen;iÞ, where wpen;i is the penalty in the ith
interval. Thus longer violations tend to have greater penal-
ties than shorter violations.1 The weight functions used for
CPU and memory are given below. The sum of penalty val-
ues over all workloads over all violations defines the viola-
tion penalty for a metric.

Regarding CPU allocations, we estimate the impact of
degraded service on a customer using a heuristic that com-
pares the actual and desired utilization of allocation for the
customer. An estimate is needed because we do not have
measurements that reflect the actual impact on a cus-
tomer. Let ua and ud < 1 be the actual and desired CPU uti-
lization of allocation for an interval. If ua 6 ud then we
define the weight for the CPU penalty wCPU

pen as wCPU
pen ¼ 0

1 We note that such penalties may be translated to monetary penalties in
financially driven systems and that monetary penalties are likely to be
bounded in such systems.

2908 D. Gmach et al. / Computer Networks 53 (2009) 2905–2922

Author's personal copy

since there is no violation. If ua > ud then response times
will be higher than planned so we must estimate the im-
pact of the degradation on the customer. We define:

wCPU
pen ¼ 1� 1� uk

a

1� uk
d

:

The penalty has a value between 0 and 1 and is larger for
bigger differences and higher utilizations. The superscript
k denotes the number of CPUs on the server. This formula
is motivated by a formula that estimates the mean
response time for the M=M=k queue [10], namely r ¼ 1=
ð1� ukÞ estimates the mean response time for a queue
with k processors and unit service demand [11]. The power
term k reflects the fact that a server with more processors
can sustain higher utilizations without impacting cus-
tomer response times. Similarly, a customer that has a
higher than desired utilization of allocation will be less
impacted on a system with more processors than one with
fewer processors.

Regarding memory allocations, we estimate the impact
of degraded service on a customer using a heuristic that
compares the actual allocation of memory la and desired
allocation of memory ld for a customer. If la P ld then we
define a memory penalty weight wMem

pen ¼ 0 since there is
no violation. If la < ld, we define wMem

pen ¼ 1� hr, where hr
is the memory hit ratio. In our simulation, the hit ratio is
measured as the percentage of satisfied memory demands
in bytes.

To summarize, the CPU and memory violation penalties
reflect two factors. They reflect the severity and length of
the violation. The severity of the violation is captured by
a weight function. Two weight functions were introduced,
but others could be employed as well.

Finally, the number of migrations is the sum of migra-
tions caused by the workload placement and workload
migration controllers. A smaller number of migrations is
preferable as it offers lower migration overheads and a
lower risk of migration failures. We divide the total num-
ber of migrations for an experiment by the number of sim-
ulated hours to facilitate interpretation.

3. Host load simulator

Predicting the long term impact of integrated manage-
ment policies for realistic workloads is a challenging task.
We employ a flexible host load simulation environment
to evaluate many management policies for resource pools
in a time effective manner.

The architecture of the host load simulation environ-
ment is illustrated in Fig. 2. The simulator takes as input
historical workload demand traces, an initial workload
placement, server resource capacity descriptions, and a
management policy. The server descriptions include num-
bers of processors, processor speeds, real memory size, and
network bandwidth. A routing table directs each work-
load’s historical time varying resource requirement data
to the appropriate simulated server. Each simulated server
uses a fair-share scheduling strategy to determine how
much of the workload demand is and is not satisfied. The
central pool sensor makes time varying information about
satisfied demands available to management controllers via
an open interface. The interface also is used to integrate
different controllers with the simulator without recompil-
ing its code.

The controllers periodically gather accumulated metrics
and make decisions about whether to cause workloads to
migrate from one server to another. Migration is initiated
by a call from a controller to the central pool actuator. In
our simulation environment this causes a change to the
routing table that reflects the impact of the migration in
the next simulated time interval. During the simulation
process the metrics defined in Section 2.4 are gathered.
Different controller policies cause different behaviours that
we observe through these metrics.

4. Case study

This section evaluates the effectiveness of the proposed
management policies using three months of real-world
workload demand traces for 138 SAP enterprise applica-
tions. The traces are obtained from a data centre that
specializes in hosting enterprise applications such as
customer relationship management applications for small

Server Pool

Controllers

Historic Workload
Traces

Host Load Emulator

Router Workload
Allocation

Table

Simulated
Server 2

Simulated
Server 1

Simulated
Server n

Central Pool
Sensor

Workload Placement
Controller

Workload Migration
Controller

. . .

Central Pool
Actuator

Resource
Demand
Data Flow

Feedback

Fig. 2. Architecture of the host load simulator.

D. Gmach et al. / Computer Networks 53 (2009) 2905–2922 2909

Author's personal copy

and medium sized businesses. Each workload was hosted
on its own server so we use resource demand measure-
ments for a server to characterize the workload’s demand
trace. The measurements were originally recorded using
vmstat [12]. Traces capture average CPU and memory
usage as recorded every 5 min.

As many of the workloads are interactive enterprise
workloads, a maximum utilization of 0.66 is desired to en-
sure interactive responsiveness. Hence, CPU demands in
the historical workload traces are scaled with a factor of
1.5 to achieve a target utilization of 0.66. The resource pool
simulator operates on this data walking forward in succes-
sive 5 min intervals. In addition to the three months of the
real-world demand traces we used data from the previous
month to initialize the demand buffers of the central pool
sensor. This enables the integrated management services
to access prior demand values at the start of a simulation
run.

We consider the following resource pool configuration:2

each server consists of 8 � 2.93-GHz processor cores,
128 GB of memory, and two dual 10 Gb/s Ethernet network
interface cards for network traffic and virtualization man-
agement traffic, respectively. Each server consumes 695 W
when idle and 1013 W when it is fully utilized.

Section 4.1 gives a workload characterization for the
SAP workloads considered in the study. Section 4.2 begins
our study at workload placement by considering the im-
pact of migration overhead. Section 4.3 considers the ques-
tion: how much capacity and power can be saved by
periodically consolidating workloads? The section assumes
perfect knowledge about future workload demands and its
results give a baseline for capacity savings that is used for
the rest of the case study. Sections 4.4 and 4.5 do not as-
sume perfect knowledge of future demands. They consider
tuning of migration controller parameters and compare the
capacity savings offered by the migration controller with
the workload placement controller and three scenarios
where the controllers are integrated. Finally, Section 4.6
presents results that demonstrate that the number of
migrations caused by the workload placement controller

can be significantly reduced without a major impact on
CPU capacity or violation penalty.

4.1. Workload characteristics

Use of virtualization technology enables the creation of
shared server pools where multiple application workloads
share each server in the pool. Understanding the nature of
enterprise workloads is crucial to properly design and pro-
vision current and future services in such pools.

Existing studies of internet and media workloads
[13,14] indicate that client demands are highly variable
(‘‘peak-to-mean” ratios may be an order of magnitude or
more), and that it is not economical to overprovision the
system using ‘‘peak” demands. Do enterprise workloads
exhibit similar properties? We present results that illus-
trate the peak-to-mean behaviour for 138 enterprise appli-
cation workloads. Understanding of burstiness for
enterprise workloads can help to choosing the right
trade-off between the application quality of service and re-
source pool capacity requirements. This section analyses
burstiness and access patterns of the enterprise application
workloads under study. It shows percentiles of demands,
the maximum durations for contiguous demands beyond
the 99th percentile, and a representative demand trace
for an interactive enterprise application.

Fig. 3 gives the percentiles of CPU demand for the 138
applications over the period of four months. The illustrated
demands are normalized as a percentage with respect to
their peak values. Several curves are shown that illustrate
the 99th, 97th, and 95th percentile of demand as well as
the mean demand. The workloads are ordered by the
99th percentile for clarity. The figure shows that more than
half of all studied workloads have a small percentage of
points that are very large with respect to their remaining
demands. The left-most 60 workloads have their top 3%
of demand values between 10 and 2 times higher than
the remaining demands in the trace. Furthermore, more
than half of the workloads observe a mean demand less
than 30% of the peak demand. These curves show the bur-
sty nature of demands for most of the enterprise applica-
tions under study. Consolidating such bursty workloads
onto a smaller number of more powerful servers is likely

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 0 20 40 60 80 100 120 140

C
PU

 D
em

an
d

as
 %

 o
f P

ea
k

C
PU

 D
em

an
d

Workload Number

99th Percentile
97th Percentile
95th Percentile

Mean Value

Fig. 3. Top percentile of CPU demand for applications under study.

2 Service providers can use the proposed approach for evaluating
different hardware platforms. For example, in [5] we made recommenda-
tions regarding server and blade based resource pool configurations.

2910 D. Gmach et al. / Computer Networks 53 (2009) 2905–2922

Author's personal copy

to reduce the CPU capacity needed to support the
workloads.

The corresponding percentiles for the memory de-
mands of the 138 applications are shown in Fig. 4. Again,
the illustrated demands are normalized as percentage with
respect to the peak memory demand. The curves show that
the average memory demand of an application is closer to
its the peak demand than it is observed for CPU. Forty-five
percent of the workloads exhibit a mean demand above
80% of their peak demands. Thus, in a memory bound
infrastructure the potential resource savings from resource
sharing is expected to be smaller than in CPU bound
systems.

An additional and complementary property for a work-
load is the maximum duration of its contiguous application
demands. While short bursts in demand may not signifi-
cantly impact a workload’s users, a system must be provi-
sioned to handle sustained bursts of high demand.
However, if an application’s contiguous demands above
the 99th percentile of demand are never longer than
10 min then it may be economical to support the applica-
tion’s 99th percentile of demand and allow the remaining
bursts to be served with degraded performance [7]. We
have analysed the maximum duration of bursts of CPU
and memory demands for the workloads. Fig. 5 shows
the duration of each workload’s longest burst in CPU

demand that is greater than its corresponding 99th percen-
tile of demand.

From the figure, we see that:

� 83.3% of workloads have sustained bursts in CPU
demand that last more than 15 min; and,

� 60% of workloads have sustained bursts in CPU demand
that last more than 30 min.

These are significant bursts that could impact an end
user’s perception of performance. A similar analysis for
memory demands shows that:

� 97.8% of workloads have sustained bursts in memory
demand that last more than 15 min; and,

� 93.5% of workloads have sustained bursts in memory
demand that last more than 30 min.

The numbers show that the length of the bursts mat-
ters. This justifies our use of the quality metric that takes
the number of successive intervals where a workload’s de-
mands are not satisfied into account.

The analysis also shows that the CPU demands are
much more variable than memory demands. CPU demands
fluctuate with user load. Memory demands tend to
increase then periodically decrease due to some form of

0%

20%

40%

60%

80%

100%

 0 20 40 60 80 100 120 140M
em

or
y

D
em

an
d

as
 %

 o
f P

ea
k

M
em

or
y

D
em

an
d

Workload Number

99th Percentile
97th Percentile
95th Percentile

Mean Value

Fig. 4. Top percentile of memory demand for applications under study.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 20 40 60 80 100 120 140

Lo
ng

es
t B

us
y

Pe
rio

d
in

 M
in

ut
es

Workload Number

97th Percentile

Fig. 5. Longest busy periods above 99th percentile of demand for studied applications.

D. Gmach et al. / Computer Networks 53 (2009) 2905–2922 2911

Author's personal copy

memory garbage collection. For the applications in our
case study, garbage collection appeared to occur each
weekend. Fig. 6 illustrates the behaviour of a typical
workload.

Finally, a workload pattern analysis (following the
methodology introduced in [4]) is conducted. Fig. 7 gives
a summary of the pattern lengths for the 138 workloads.
The pattern analysis discovered patterns with lengths be-
tween 3 h and seven weeks:

� 67.6% of the workloads exhibit a weekly behaviour; and,
� 15.8% of the workloads exhibit a daily behaviour.

To summarize, this section has shown that there are
significant bursts in demand for the workloads and there
is a greater opportunity for CPU sharing than for memory
sharing. A workload pattern analysis shows that most of
the enterprise workloads exhibit strong weekly or daily
patterns for CPU usage. Memory usage tends to increase
over a week then decrease suddenly.

4.2. Impact of migration overhead with a workload
placement controller

This section considers the impact of CPU overhead
caused by migrations on required CPU capacity and on

CPU violation penalty per hour. We do not focus on mem-
ory violation penalties, as these values were typically
small.

Many virtualization platforms incur virtualization over-
head. Virtualization overhead depends on the type of the
virtualization and its implementation specifics. A migra-
tion requires the memory of a virtual machine to be copied
from the source server to a target server. Typically, the
‘‘amount” of CPU overhead is directly proportional to the
‘‘amount” of I/O processing [15,16]. Supporting a migration
causes CPU load on both the source and target servers. The
simulator reflects this migration overhead in the following
way. For each workload that migrates, a CPU overhead is
added to the source and destination servers. The overhead
is proportional to the estimated transfer time based on the
memory size of the virtual machine and the network inter-
face card bandwidth. It is added to the source and destina-
tion servers over a number of intervals that corresponds to
the transfer time. We assume that we use no more than
half of the bandwidth available for management purposes,
i.e., one of the two management network interface cards.
For example, if a workload has 12 GB memory size and
the networking interface is 1 Gb/s then additional CPU
time is used for migrating the workload is
ðCmigr � 12 GBÞ=1 Gb=s, where Cmigr is the coefficient of
migration overhead.

0

500

1000

1500

2000

2500

15/04 29/04 13/05 27/05 10/06 24/06
 0

 10

 20

 30

 40

 50

 60

C
PU

 D
em

an
d

in
 S

ha
re

s

M
em

or
y

D
em

an
d

In
 G

B

Time

CPU Demand
Memory Demand

Fig. 6. CPU and memory demands for a user interactive workload.

1 Day
5 Days
1 Week
10 Days
2 Weeks

3 Weeks

4 Weeks

5 Weeks

6 Weeks

7 Weeks

0 20 40 60 80 100 120 140

Le
ng

th
 o

f D
et

ec
te

d
Pa

tte
rn

s

Workload Number

Fig. 7. Lengths of workload demand patterns.

2912 D. Gmach et al. / Computer Networks 53 (2009) 2905–2922

Author's personal copy

To evaluate an impact of the additional CPU overhead
caused by I/O processing during the workload migrations,
we employ the workload placement controller with a 4 h
control interval. All workloads migrate at the end of each
control interval. Fig. 8 shows the results using migration
overhead coefficient Cmigr varied from 0 to 2. The figure
shows several different metrics. These include the normal-
ized CPU hours used, the normalized idle CPU hours, and
the CPU violation penalty per hour.

A higher migration overhead requires more CPU re-
sources. The impact on CPU hours used is only noticeable
in Fig. 8 when Cmigr P 1. The CPU violation penalty clearly
increases for Cmigr P 1. In general, we find our results to be
insensitive to values of Cmigr in the range between 0 to 1.0.
We choose Cmigr ¼ 0:5 used during a workload migration
for the remainder of the study. This value is not unreason-
able because the network interface cards we consider sup-
port TCP/IP protocol offloading capabilities. There are
many reports suggesting that such cards can be driven to
10 Gbps bidirectional bandwidth while using 50% or less
of a CPU, e.g., [17].

4.3. Performance, quality, and power assuming perfect
knowledge

In this section, we consider an ideal workload place-
ment strategy. This approach assumes that we have perfect
knowledge of future resource demands. It gives an upper
bound for the potential capacity savings from consolidat-
ing workloads at different time scales. We use this bound
later in the paper to determine how well our policies, that
do not have perfect knowledge, perform compared to the
ideal case.

Fig. 9 shows the results of an simulation where we use
the workload placement controller to periodically consoli-
date the 138 workloads to a small number of servers in the
resource pool. For this scenario, for a given time period, the
workload placement controller chooses a placement such
that each server is able to satisfy the peak of its workload
CPU and memory demands. The figure shows the impact
on capacity requirements of using the workload placement
controller once at the start of the three months, and for
cases with a control interval of 4 weeks, 1 week, 1 day,

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0 0.25 0.5 0.75 1 1.5 2
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

N
or

m
al

iz
ed

 C
PU

 H
ou

rs

Vi
ol

at
io

n
Pe

na
lty

 p
er

 H
ou

r

Coefficient of Migration Overhead

Normalized CPU Hours Used
Normalized CPU Hours Idle

CPU Violation Penalty

Fig. 8. Migration overhead.

 0

 0.5

 1

 1.5

 2

 2.5

Initial Rear-
rangement Only

4 Weeks
1 Week

1 Day
4 Hours

1 Hour
15 Minutes

 5 Minutes
 0

 100

 200

 300

 400

 500

 600

N
or

m
al

iz
ed

 C
PU

 H
ou

rs

Vi
ol

at
io

n
Pe

na
lti

es
 /

M
ig

ra
tio

ns
 P

er
 H

ou
r

Workload Placement Control Interval

CPU Hours Used + Idle
CPU Violation Penalties

Migrations

18
80

.6
12

97
.6

Fig. 9. Simulation results assuming perfect knowledge.

D. Gmach et al. / Computer Networks 53 (2009) 2905–2922 2913

Author's personal copy

4 h, 1 h, and 15 min. The figure shows that re-allocating
workloads every 4 h captures most of the capacity savings
that can be achieved, i.e., with respect to reallocation every
15 min. The 4 h and 15 min scenarios required a peak of 19
servers. All the other scenarios also had peaks between 19
and 21 servers. For the 4 h scenario, we note that the nor-
malized server CPU hours used is approximately one-half
of the idle CPU hours giving an average utilization close
to 69% over the three month period with a negligible
hourly CPU violation penalty value of 0.4. In subsequent
subsections, we treat the results from the 4 h ideal case
as the baseline for capacity and quality.

Fig. 9 shows that as expected as the control interval
drops to the hourly, fifteen minute, and five minute levels
the number of migrations per hour increases proportion-
ally as most workloads are likely to be reassigned. The
resulting migration overheads increase the CPU quality
violations. Table 1 gives a more detailed breakdown of
the violations for the 4 h control interval case.

The distribution of the Watts used is shown in Fig. 10.
We note that the power consumption of the 15 min, 1 h,
and 4 h scenarios are pretty close to each other. For work-
load placement control intervals longer than 1 day, more
servers are used resulting in higher power consumption.

In later subsections, we consider how much of these
ideal advantages we are able to achieve in practice without
assuming perfect knowledge. The workload placement
controller control interval is chosen as 4 h.

4.4. Workload migration controller thresholds

This section evaluates the effectiveness of the migration
controller. The experiments start with an ideal workload
placement for the first 4 h and use the fuzzy-logic based
migration controller to maintain the resource access qual-
ity of the workloads. The advisor module of the controller

is configured as follows: it triggers the fuzzy controller if
either a server is overloaded or the system is lightly uti-
lized. A server is considered overloaded if the CPU or mem-
ory utilization exceeds a given threshold. In that case, it
triggers the fuzzy controller that tries to migrate one work-
load from the concerned server to a less loaded one. Fur-
thermore, the advisor deems a server pool lightly
utilized, if the average CPU and memory utilization over
all servers fall below their given thresholds. Then, the fuz-
zy controller chooses the least loaded server, migrates all
of its workloads to other servers, and shuts down the
server.

To evaluate the impact of the feedback controller, the
following levels for the thresholds are considered:

� a: The CPU threshold defining overloaded servers varies
from 80%, 85%, 90%, 95%, and 99% CPU utilization.

� b: The memory threshold defining overloaded servers
varies from 80%, 85%, 90%, 95%, and 99% memory
utilization.

� d: The CPU threshold defining a lightly utilized resource
pool varies from 30%, 40%, 50%, and 60% average CPU
utilization of the server pool.

� c: The memory threshold defining a lightly utilized
resource pool varies from 30%, 40%, 50%, 60%, 70%, and
80% average memory utilization of the server pool.

A three months simulation is conducted for each of the
factor level combinations resulting in a total number of
600 experiments.

An ANOVA model [18] captures the effects of factor lev-
els such as different values for thresholds on a metric, e.g.,
on the CPU violation penalty or CPU capacity metric. Each
factor level has a numerical effect on the metric. The sum
of each factor’s effects adds to zero. The effect is defined
as the difference between the overall mean value for the
metric over all combinations of factor levels and the
numerical impact of the factor level on the metric with re-
spect to the overall mean value. Similarly, interactions be-
tween factor levels also have effects. An analysis of
variance considers the sum of squares of effects. The sums
of squares are variations for the metric. The analysis
quantifies the impact of factors and interactions between
factors on the total variation over all combinations of
factor levels. When the assumptions of the ANOVA model-
ling approach hold, a statistical F-test can be used to deter-
mine which factors and interactions between factors have

Table 1
CPU quality violations assuming perfect knowledge for the 4 h control
interval.

Interval duration Total number Average number

5 min 1090 13 per Day
10 min 161 1.9 per Day
15 min 14 1.2 per Week
20 min 3 1 per Month

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

C
D

F

Watt Consumption per Interval

5 Minutes
15 Minutes

1 Hour
4 Hours

1 Day
1 Week

4 Weeks
Initial Rearrangement Only

Fig. 10. Power consumption assuming perfect knowledge.

2914 D. Gmach et al. / Computer Networks 53 (2009) 2905–2922

Author's personal copy

a statistically significant impact on the metric and to quan-
tify the impact.

The assumptions of an ANOVA are:

� the effects of factors are additive;
� uncontrolled or unexplained experimental variations,

which are grouped as experimental errors, are indepen-
dent of other sources of variation;

� variance of experimental errors is homogeneous; and,
� experimental errors follow a Normal distribution.

The model we employ for the CPU capacity and CPU vio-
lation penalty metrics is illustrated with the following
equation:

Metric ¼ lþ ai þ bj þ ck þ dl þ ðabÞij þ ðacÞik þ ðadÞil
þ ðbcÞjk þ ðbdÞjl þ ðcdÞkl þ e
i 2 f80;85;90;95;99g; j 2 f80;85;90;95;99g;
k 2 f30;40;50;60g; and l 2 f30;40;50;60;70;80g

In the model a; b; c, and d correspond to factors CPU and
memory overload threshold and CPU and memory under-
load threshold, respectively. The model states that a met-
ric, e.g., CPU violation penalty, is equal to a mean value
over all experiments l plus an effect that is due to each
factor’s level plus an effect that is due to pair-wise interac-
tions for factors, e.g., the ith threshold for CPU overload and
the kth threshold for CPU underload. The error term e in-
cludes the effects of higher level interactions, i.e., three
and four factor interactions.

For the ANOVA models we consider, the factors have an
additive impact on the metrics not a multiplicative impact.
The experiments are fully controlled, experimental errors
are defined as higher order interactions, which from a de-
tailed analysis have small effects. Visual tests suggest that
the errors are homogeneous. The Normality assumption for
errors is discussed next.

For the CPU violation penalty the results of a Kolmogo-
rov–Smirnov test (K–S test) [18] for the 600 errors resulted
in a D-value of 0.0627, which concludes that the error val-
ues are Normally distributed with a ¼ 0:01. However, after
removing the 10 largest of the 600 errors, the K–S test indi-
cates that the remaining 590 errors are Normally distrib-

uted with significance a ¼ 0:2. This suggests that 20% of
randomly generated Normally distributed data sets will
have a greater difference from the Normal distribution
than our experiment’s error data. Hence, we conclude that
the error values are Normally distributed and the ANOVA
model can be applied. For the CPU capacity, the K–S test
yields a D-value D ¼ 0:049122197 suggesting that the
600 errors are Normally distributed with a significance le-
vel a ¼ 0:1. As with the CPU violation penalty model,
removing a few extreme values dramatically increases
the significance level.

ANOVA results are presented in a table, e.g., Table 2. The
columns identify the factor and factor interactions
(Source), each source’s sum of squares of effects (SS) as
an absolute value and as a percentage (SS in %) of the total
SS over all sources, the number of degrees of statistical
freedom that contribute to the SS, the mean square value
(MS) which is the SS for a source divided by its number
of degrees of freedom, the computed F-value for the mean
square value, the critical value for the F-value that deter-
mines statistical significance, and finally the conclusion
regarding whether a source has a statistically significant
impact on the metric.

Table 2 gives the results of the ANOVA for the factors
regarding CPU violation penalty. The table shows that fac-
tors d and c, the CPU and memory thresholds for defining
underloaded servers, and their interaction explains 99%
of the variation in CPU violation penalty over the 600
experiments. Interestingly, factors a and b, thresholds for
overloaded CPU and memory, had little impact on quality.
The bursts in demand for the traces under study were often
larger than the headroom remaining on a server regardless
of the chosen threshold level. The underload factors had a
much bigger impact on quality. They guide consolidation.
Lower threshold values limit consolidation so that the
same applications use more servers and violations are less
likely.

Table 3 gives the results of an ANOVA for the factors
regarding the CPU capacity. Factor c, the memory thresh-
old for defining underloaded servers, has an even larger
impact on capacity than on CPU violation penalty. Again,
factors d and c and their interaction explain nearly all,
97%, of the variation. Recognizing underload conditions is

Table 2
ANOVA table for CPU violation penalty.

Source SS SS in % df MS F-Value Crit. Conclusion

a 32209682 0.17 4 8052420 50.17 2.39 Significant
b 442121 0 4 110530.3 1 2.39 Not significant
d 3952996127 20.96 3 1317665376 8209.6 2.623 Significant
c 9077000224 48.13 5 1815400045 11310.6 2.232 Significant
ab 2997479 0.02 16 187342 1.167 1.664 Not significant
ad 20512291 0.11 12 1709358 10.65 1.772 Significant
ac 37595875 0.2 20 1879794 11.712 1.592 Significant
bd 701391 0 12 58449.2 0.3 1.772 Not significant
bc 2969998 0.02 20 148500 0.925 1.592 Not significant
dc 5653318689 29.98 15 376887913 2348.2 1.687 Significant

Error 78325016 0.41 488 160502.1

Total 18859068891 100 599

D. Gmach et al. / Computer Networks 53 (2009) 2905–2922 2915

Author's personal copy

clearly an important aspect of policy for managing re-
source pools.

The results of the 600 simulations are shown in Fig. 11
as small black dots. The figure illustrates CPU violation
penalties versus normalized CPU capacity required under
different policy configurations. Normalized capacity is de-
fined as the sum of the total server CPU hours used and idle
CPU hours divided by the sum of the total server CPU hours
used and idle CPU hours used for the ideal case with a 4 h
workload placement interval.

Each of the 600 simulations represents a combination of
factor levels. As expected, the figure shows that as work-
loads are consolidated more tightly and capacity is reduced
there is an increase in the CPU violation penalties. The spe-
cific shape of this curve is workload and resource pool spe-
cific and reflects the variability in workload demands.

A Pareto-optimal set of simulation runs is illustrated in
Fig. 11 using a red line. These combinations of factor levels
provided lowest CPU violation penalties and/or the lowest
normalized CPU capacity. Ten of the Pareto-optimal combi-
nations are chosen representing the best behaviours of the
migration controller and serve as a baseline for the remain-
der of the paper. A data centre operator could choose any
one of these as a best behaviour depending on the quality
versus capacity trade-off desirable for the data centre’s

workloads. Migration controller thresholds for the 10 cases
are given in Table 4.

4.5. Performance, quality, and power achieved by
management policies

We now consider the impact of integrated workload
placement and workload migration controller policies for
managing the resource pool. The management policies
are described in Section 2.3. The management policies

Table 3
Analysis of variance table for CPU capacity.

Source SS SS in % df MS F-Value Crit. Conclusion

a 18451760914 2.95 4 4612940228 1689.8 2.39 Significant
b 203448728 0.03 4 50862182 18.632 2.39 Significant
d 93715380384 14.97 3 31238460128 11443.3 2.623 Significant
c 4.34742E+11 69.44 5 86948493051 31851.1 2.232 Significant
ab 101095635 0.02 16 6318477 2.315 1.664 Significant
ad 299339472 0.05 12 24944956 9.138 1.772 Significant
ac 3502757297 0.56 20 175137865 64.157 1.592 Significant
bd 66662589 0.01 12 5555216 2.035 1.772 Significant
bc 462381183 0.07 20 23119059 8.469 1.592 Significant
dc 73166116866 11.69 15 4877741124 1786.8 1.687 Significant
Error 1332165080 0.21 488 2729846

Total 6.26044E+11 100 599

 0

 2

 4

 6

 8

 10

 12

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

C
PU

 V
io

la
tio

n
Pe

na
lti

es
 P

er
 H

ou
r

Normalized Capacity

Suboptimal Combinations
Pareto-Optimal Combinations

Chosen Experiments

Fig. 11. Chosen combinations of thresholds for further experiments.

Table 4
Migration controller thresholds for 10 Pareto-optimal cases.

a (%) b (%) c (%) d (%)

99 99 60 80
90 95 60 80
99 99 50 80
90 95 50 80
90 90 50 70
99 95 40 80
85 99 40 80
99 95 40 60
99 90 30 80
99 99 40 40

2916 D. Gmach et al. / Computer Networks 53 (2009) 2905–2922

Author's personal copy

are each simulated for the 10 Pareto-optimal sets of migra-
tion controller threshold values as illustrated in Fig. 11.
Fig. 12 through Fig. 14 show simulation results for our
baseline cases and the workload management policies we
consider. The CPU metrics are discussed first followed by
the memory and migration metrics.

The use of a workload migration controller alone policy
MC is most typical of the literature [19,20]. The MC policy
does very well as a starting point. Fig. 12 shows that when
using approximately 8% more CPU capacity than the ideal
case there is a CPU violation penalty per hour of 12.6. As
the migration controller becomes less aggressive at consol-
idating workloads, i.e., using 50% more CPU capacity than
the ideal case, the penalty drops to nearly zero.

The workload placement controller policy WP does not
use the migration controller. It operates with a control
interval of 4 h and consolidates to a given CPU and mem-
ory utilization, which is varied between 75% and 100%. In
Fig. 12 the 100% is omitted for visibility reasons. It incurred
hourly CPU violation penalties of 84. The WP policy does
well when the systems are overprovisioned because there
is little likelihood of a CPU violation penalty. As the work-
loads become more consolidated, the CPU violation penalty
per hour increases dramatically.

The MC + WP policy is able to achieve much better CPU
quality than either MC or WP alone while using much less
CPU capacity. The periodic application of the workload
placement controller globally optimizes the CPU usage
for the resource pool. The migration controller alone does
not attempt to do this. This policy and subsequent policies
permit the workload placement controller to consolidate
workloads onto servers using up to 100% CPU and memory
utilization.

The MC + WP on Demand policy invokes the workload
placement controller to consolidate the workloads when-
ever the resource pool is lightly loaded. It behaves better
than MC alone but not as well as MC + WP because it does
not periodically provide for a global optimization of CPU
usage for the resource pool.

Finally, MC + WP + WP on Demand provides very good
results from both a capacity and violation penalty point
of view. It achieves nearly ideal CPU violation penalties
while requiring only 10–20% more CPU capacity than the
ideal case. We also note that the violation penalties for this
approach are less sensitive to migration controller thresh-
old values.

Fig. 13 shows the capacity versus quality trade-off for
the memory metric. All of the cases provide for very low

 0

 5

 10

 15

 20

 25

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

C
PU

 V
io

la
tio

n
Pe

na
lti

es
 P

er
 H

ou
r

Normalized Capacity

MC
WP

MC + WP
MC + WP on Demand

MC + WP + WP on Demand

Fig. 12. Comparison of different management policies regarding CPU.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

M
em

or
y

Vi
ol

at
io

n
Pe

na
lti

es
 P

er
 H

ou
r

Normalized Capacity

MC
WP

MC + WP
MC + WP on Demand

MC + WP + WP on Demand

Fig. 13. Comparison of different management policies regarding memory.

D. Gmach et al. / Computer Networks 53 (2009) 2905–2922 2917

Author's personal copy

memory violation penalties except for the WP policy. The
WP policy has no ability to react to the case where the de-
mand for memory exceeds the supply of memory. As a re-
sult WP can incur violations with many measurement
intervals and hence large violation penalties.

Fig. 14 shows the number of migrations for the different
policies. For each policy the figure shows the minimum,
first quartile3, median, third quartile and maximum number
of migrations for all 10 chosen MC thresholds cases illus-
trated in Fig. 11. The workload placement controller causes
more migrations than the migration controller alone. The
on-demand policies can cause significantly more migrations
when implementing very aggressive migration controller
policies. However, these policies also result in the most sig-
nificant capacity savings with low violation penalties. The
next subsection presents the results of a method that re-
duces the number of migrations caused by a workload place-
ment controller.

4.6. Constraining migrations for workload placement

This section applies a multi-objective approach for the
workload placement controller, as described in Section
2.1 to one of the 10 MC threshold cases. The approach con-
strains the number of migrations that the workload place-
ment controller is permitted to recommend. Fewer
migrations will cause lower migration overheads but also
reduces the opportunity for consolidation. To evaluate
the benefits of the approach we compare capacity, quality
violations and migrations between the MC policy, which
does not use the workload placement controller, and the
MC + WP + WP on Demand policy. Fig. 15 shows the
results.

In the figure, we vary the percentage of workloads that
it is desirable for the workload placement controller to mi-
grate from 100%, i.e., no constraint on migrations, down to
5%. The results show that introducing the constraint causes
much fewer migrations. Without a limit, the average num-
ber of migrations every hour was 116.6 for the on-demand
case. This value is nearly 50 times larger than the number

 0

 50

 100

 150

 200

 250

 300

 350

MC WP MC + WP MC +
WP on Demand

MC + WP
+

WP on Demand

Av
er

ag
e

M
ig

ra
tio

ns
 P

er
 H

ou
r

Management Policy

Fig. 14. Number of migrations for all 10 chosen MC threshold cases.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

MC MC + WP +
WP On Demand

MC + WP +
 WP On Demand

<50%

MC + WP +
 WP On Demand

<15%

MC + WP +
 WP On Demand

<5%

 0

 2

 4

 6

 8

 10

 12

N
or

m
al

iz
ed

 C
ap

ac
ity

C
PU

 V
io

la
tio

n
Pe

na
lti

es
 /

M
ig

ra
tio

ns
 p

er
 H

ou
r

Allowed Migrations for Workload Placement in %

Nomalized Capacity
CPU Violation Penalties

Migrations116.6

Fig. 15. Constrained migrations.

3 The first and second quartile refer to the 25 and 50 percentiles.

2918 D. Gmach et al. / Computer Networks 53 (2009) 2905–2922

Author's personal copy

of migrations for the MC policy. With a 50% constraint, the
migrations per hour drops below 12. With a 15% con-
straint, the number of migrations drops to 10.5 per hour
using slightly less capacity as the MC case and yielding a
significantly lower quality violation value. With a 5% con-
straint, the capacity increases slightly beyond the MC case
because there are fewer gains from consolidation but the
quality violation value decreases to nearly zero. This is
achieved with the average number of migrations per hour
being only four times greater than for the MC case. The
peak number of migrations per hour for the unconstrained,
50%, 15%, and 5% cases are 1477, 231, 147, and 132, respec-
tively. The peak values are high when the workload place-
ment controller is triggered every 5 min.

5. Related work

Server consolidation is becoming an increasingly popu-
lar approach in enterprise environments to better utilize
and manage systems. Manufacturers of high-end commer-
cial servers have long provided hardware support for ser-
ver consolidation such as a logical partitioning and
dynamic domains [21,22]. Although virtualization has
been around for more than three decades, it has found its
way into the mainstream only recently with a variety of
solutions – both commercial and open source – that are
now available for commodity systems. Many enterprises
are beginning to exploit shared resource pool environ-
ments to lower their infrastructure and management costs.
The problem of efficient workload placement and work-
load management in such environments is in a centre of
attention for many research and product groups.

In our work, we chose to represent application behav-
iour via workload demand traces. Many research groups
have used a similar approach to characterize application
behaviour and applied trace-based methods to support
what-if analysis in the assignment of workloads to consol-
idated servers [23,7,8,24,25,1,3]. A consolidation analysis
presented in [23] packs existing server workloads onto a
smaller number of servers using an Integer Linear Pro-
gramming based bin-packing method. Unfortunately, the
bin-packing method is NP-complete for this problem,
resulting in a computation intensive task. This makes the
method impractical for larger consolidation exercises and
on-going capacity management. There are now commer-
cial tools [26–29] that employ trace-based methods to sup-
port server consolidation exercises, load balancing,
ongoing capacity planning, and simulating placement of
application workloads to help IT administrators improve
server utilization.

We believe the workload placement service we employ
has advantages over other workload placement services
described above. It addresses issues including classes of
service and placement constraints. The approach is able
to minimize migrations over successive control intervals.
Some researchers propose to limit the capacity require-
ment of an application workload to a percentile of its de-
mand [24]. This does not take into account the impact of
sustained performance degradation over time on user
experience as our required capacity definition does. Others

look only at objectives for resources as a whole [3] rather
than making it possible for each workload to have an inde-
pendently specified objective.

Recently, virtualization platforms such as VMware and
Xen [2,30] provide the ability to dynamically migrate
VMs from one physical machine to another without inter-
rupting application execution. They have implemented
‘‘live” migration of VMs that results in extremely short
downtimes ranging from tens of milliseconds to a second.
VM migration has been used for dynamic resource alloca-
tion in Grid environments [31–33]. In contrast, we focus
on data centre environments with stringent quality of ser-
vice requirements that necessitate design of highly respon-
sive migration algorithms.

Wood et al. [20] present Sandpiper, a system that auto-
mates the task of monitoring virtual machine performance,
detecting hotspots, and initiating any necessary migra-
tions. Sandpiper implements heuristic algorithms to deter-
mine which virtual machine to migrate from an overloaded
server, where to migrate it, and a resource allocation for
the virtual machine on the target server. Sandpiper
implements a black-box approach that is fully OS- and
application-agnostic and a gray-box approach that exploits
OS- and application-level statistics. Sandpiper is closest to
the migration controller presented in our paper though
they implement different migration heuristics.

VMware’s Distributed Resource Scheduler [34] also uses
migration to perform automated load balancing in re-
sponse to CPU and memory pressure. DRS uses a user space
application to monitor memory usage similar to Sandpiper,
but unlike Sandpiper, it does not utilize application logs to
respond directly to potential application service level vio-
lations or to improve placement decisions.

1000 Islands Project [35] aims to provide an integrated
capacity and workload management for the next genera-
tion data centres. In the paper, the authors evaluate one
loose integration policy for different controllers, while
our paper provides a detailed performance study evaluat-
ing outcome of the three different integration policies
and uses a set of novel QoS metrics. The paper also consid-
ers the integration of a per-server workload manager and
reports on some real system measurements whereas this
paper does not.

Raghavendra et al. [19] integrates sophisticated aspects
of power and performance management for resource pools.
They present a simulation study that optimizes with re-
spect to power while minimizing the impact on perfor-
mance. The results from simulations suggest that for
integrated controllers between 3% and 5% of workload
CPU demand units are not satisfied with their approach.
Unsatisfied demands are not carried forward in their sim-
ulation. With our host simulation approach, we carry for-
ward demands and focus more on per-workload quality
metrics that characterize epochs of sustained overload.
With our experiments, more than 99.9% of workload de-
mands were satisfied for all cases. In [19], the authors con-
clude that 3–5% performance degradation is acceptable to
save power. We concur, but suggest this is only true in
exceptional circumstances when access to power is de-
graded. Otherwise workload QoS must be maintained to
satisfy business objectives.

D. Gmach et al. / Computer Networks 53 (2009) 2905–2922 2919

Author's personal copy

In our work, to further improve efficiency and applica-
tion quality of service, we manage workloads by integrat-
ing the workload placement approach with a workload
migration controller. Our simulation results show that
such integrated approach provides unique performance
and quality benefits.

Our approach is not application-centric. Commonly
available resource demand traces are the basis for our
management system. However, there are many research
papers, e.g. [36,37], which design dynamic provisioning
systems for targeted classes of applications, e.g., multi-tier
applications. There are excellent earlier works on load
sharing systems that support batch-like workloads
[38,39]. These papers argue that simple adaptive tech-
niques outperform static job placement policies and per-
form nearly as well at improving system performance as
more complex optimization methods. Our results confirm
these findings for complex enterprise applications with
time varying demands and time varying resource pool size.
However, for our complex scenario, by integrating two
adaptive techniques that operate at different time scales
we are able to significantly improve quality measures to
a nearly optimal level without increasing the required
capacity as compared to using the techniques separately.

There are many related works on policy-based manage-
ment. For example, in [40], the authors statically derive
and then dynamically refine low-level service level specifi-
cations to meet given SLAs while maximizing business
profit.

There is a new research direction that has emerged
from studying server consolidation workloads using a mul-
ticore server design [41,42]. The authors show, across a
variety of shared cache configurations, that a commercial
workload’s memory behaviour can be affected in unex-
pected ways by other workloads. In our work, we do not
consider impact of cache sharing, while it is an interesting
direction for future research.

6. Conclusions and future work

This paper describes an approach for evaluating the im-
pact of policies for resource pool management on required
capacity, resource access quality violations, and workload
migrations. The evaluation takes into account the impact
of different controllers that may operate at different time-
scales. The approach can be applied to different sets of
workloads and different configurations of resource pools.
The results can be used to select appropriate policy for a gi-
ven resource pool scenario. We provide a detailed work-
load analysis of 138 SAP workloads that operate in an
industrial data centre environment. The workloads have
sustained bursts in demand that must be taken into ac-
count during resource pool management. We propose a re-
source access quality violation penalty metric that reflects
both the duration of violations and the expected impact of
the violations on end customers.

Migration and workload placement controllers are
studied in detail. A formal analysis is conducted that ex-
plores the impact of migration controller threshold values

on metric capacity and violation penalty. The analysis
quantifies the impact of the threshold values and show
the particular importance of underload threshold values.
Such results can be used to guide data centre operators
in their choice of thresholds.

Over 600 simulation experiments are conducted to as-
sess the impact of combinations of migration controller
threshold parameters. We use a Pareto-optimal subset of
these results as a baseline to further evaluate management
policies. The set provides a range of quality versus capacity
trade-offs that a resource pool operator could choose from.
The migration and workload placement controllers are
evaluated alone, in parallel, and in an integrated manner.
We found that the integrated controllers had the best qual-
ity versus capacity trade-off for our resource pool scenario.
The tightest integration had the most benefits, but caused
a high workload migration rate. Finally, a version of the
workload placement controller is employed that mini-
mizes migrations thereby significantly reducing the migra-
tion rate with little impact on capacity and quality.

We conclude that a reactive migration controller or pro-
active workload placement controller alone is not ade-
quate for effective resource pool management. A reactive
migration controller does not exploit resource saving
opportunities from global optimizations while a workload
placement controller is unable to reduce violation penal-
ties caused by bursts in demands and overload conditions
between changes in workload placements. In addition, it
does not take advantage of short term opportunities to re-
move servers in the same way as the migration controller
does.

Our future work includes evaluating other instances of
controllers and management policies, and to develop man-
agement policies that react well to more kinds of work-
loads and different kinds of simulated failures. Finally,
we also plan to consider a greater variety of workloads.

References

[1] J. Rolia, L. Cherkasova, M. Arlitt, A. Andrzejak, A capacity
management service for resource pools, in: Proc. 5th Int.
Workshop on Software and Performance (WOSP), Palma, Illes
Balears, Spain, 2005, pp. 229–237.

[2] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C. Limpach, I. Pratt, A.
Warfield, Live migration of virtual machines, in: Proc. of the 2nd
Symposium on Networked Systems Design and Implementation
(NSDI), Boston, MA, 2005, pp. 273–286.

[3] S. Seltzsam, D. Gmach, S. Krompass, A. Kemper, AutoGlobe: an
automatic administration concept for service-oriented database
applications, in: Proc. of the 22nd Int. Conf. on Data Engineering
(ICDE), Industrial Track, Atlanta, Georgia, USA, 2006.

[4] D. Gmach, J. Rolia, L. Cherkasova, A. Kemper, Workload analysis and
demand prediction of enterprise data center applications, in: Proc. of
the IEEE Int. Symposium on Workload Characterization (IISWC),
Boston, MA, USA, 2007, pp. 171–180.

[5] D. Gmach, J. Rolia, L. Cherkasova, G. Belrose, T. Turicchi, A. Kemper,
An integrated approach to resource pool management: policies,
efficiency and quality metrics, in: Proc. of the 38th IEEE/IFIP Int.
Conf. on Dependable Systems and Networks (DSN), Anchorage,
Alaska, USA, 2008.

[6] J.H. Holland, Adaptation in Natural and Artificial Systems, University
of Michigan Press, Ann Arbor, 1975.

[7] L. Cherkasova, J. Rolia, R-Opus: a composite framework for
application performability and QoS in shared resource pools, in:
Proc. of the Int. Conf. on Dependable Systems and Networks (DSN),
Philadelphia, USA, 2006.

2920 D. Gmach et al. / Computer Networks 53 (2009) 2905–2922

Author's personal copy

[8] D. Gmach, S. Krompass, A. Scholz, M. Wimmer, A. Kemper, Adaptive
quality of service management for enterprise services, ACM
Transactions on the Web (TWEB) 2 (1) (2008).

[9] D. Economou, S. Rivoire, C. Kozyrakis, P. Ranganathan, Full-system
power analysis and modeling for server environments, in: Workshop
on Modeling, Benchmarking, and Simulation (MoBS), 2006.

[10] L. Kleinrock, Queueing Systems, Theorie, vol. 1, John Wiley & Sons,
New York, 1975.

[11] J. Rolia, Predicting the performance of software systems, Ph.D.
Thesis, University of Toronto, 1992.

[12] H. Ware, F. Frdrick, Linux Man Page: vmstat(8), 1994, <http://
linux.die.net/man/8/vmstat>.

[13] M.F. Arlitt, C.L. Williamson, Web server workload characterization:
the search for invariants, in: Proc. of the ACM SIGMETRICS Int. Conf.
on Measurement and Modeling of Computer Systems, ACM,
Philadelphia, PA, USA, 1996, pp. 126–137.

[14] L. Cherkasova, M. Gupta, Characterizing locality, evolution, and life
span of accesses in enterprise media server workloads, in: Proc. of
the 12th Int. Workshop on Network and Operating Systems Support
for Digital Audio and Video (NOSSDAV), ACM, New York, NY, USA,
2002, pp. 33–42.

[15] L. Cherkasova, R. Gardner, Measuring CPU overhead for I/O
processing in the Xen virtual machine monitor, in: ATEC ’05: Proc.
of the USENIX Annual Techn. Conf., USENIX Association, Anaheim,
CA, 2005, pp. 24–24.

[16] D. Gupta, L. Cherkasova, R. Gardner, A. Vahdat, Enforcing
performance isolation across virtual machines in Xen, in: Proc. of
the ACM/IFIP/USENIX 7th Int. Middleware Conf., Melbourne,
Australia, 2006.

[17] NetXen, Power and Cost Savings Using NetXen’s 10GbE Intelligent
NIC, White Paper, 2008. <http://www.netxen.com/technology/pdfs/
Power_page.pdf>.

[18] R. Jain, The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation,
and Modeling, John Wiley & Sons, New York, NY, USA, 1991.

[19] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, X. Zhu, No
power struggles: coordinated multi-level power management for
the data center, in: ASPLOS XIII: Proc. of the 13th Int. Conf. on
Architectural Support for Programming Languages and Operating
Systems, New York, NY, USA, 2008, pp. 48–59.

[20] T. Wood, P. Shenoy, A. Venkataramani, M. Yousif, Black-box and
gray-box strategies for virtual machine migration, in: Proc. of the 4th
USENIX Symposium on Networked Systems Design and
Implementation, Cambridge, MA, USA, 2007, pp. 229–242.

[21] HP, HP Virtual Server Environment, 2008. <https://h30046.www3.
hp.com/campaigns/2007/promo/VSE/index.php> .

[22] J. Jann, L.M. Browning, R.S. Burugula, Dynamic reconfiguration: basic
building blocks for autonomic computing on IBM pSeries servers,
IBM Systems Journal 42 (1) (2003) 29–37.

[23] A. Andrzejak,, M. Arlitt, J. Rolia, Bounding the resource savings of
utility computing models, Tech. Rep. HPL-2002-339, HP Labs, 2002.

[24] B. Urgaonkar, P. Shenoy, T. Roscoe, Resource overbooking and
application profiling in shared hosting platforms, in: ACM SIGOPS
Operating System Review 36, Special Issue: Cluster Resource
Management, 2002, pp. 239–254.

[25] J. Rolia, X. Zhu, M. Arlitt, A. Andrzejak, Statistical service assurances
for applications in utility grid environments, Performance
Evaluation 58 (2–3) (2004) 319–339.

[26] VMware, VMWare capacity planner, 2008. <http://www.vmware.
com/products/capacity_planner/>.

[27] HP, HP Integrity Essentials Capacity Advisor, 2008. <http://
h71036.www7.hp.com/enterprise/cache/262379-0-0-0-121.html>.

[28] IBM, Tivoli Performance Analyzer, 2008.<http://www.ibm.com/
software/tivoli/products/performance-analyzer/>.

[29] TeamQuest, TeamQuest – IT Service Optimization, 2008. <http://
www.teamQuest.com>.

[30] VMware, VMware VMotion, 2008. <http://www.vmware.com/
products/vi/vc/vmotion.html>.

[31] L. Grit, D. Irwin, A. Yumerefendi, J. Chase, Virtual machine hosting for
networked clusters: building the foundations for autonomic
orchestration, in: Proc. of the 1st Int. Workshop on Virtualization
Technology in Distributed Computing (VTDC 2006), IEEE Computer
Society, Tampa, FL, USA, 2006, p. 7.

[32] P. Ruth, J. Rhee, D. Xu, R. Kennell, S. Goasguen, Autonomic live
adaptation of virtual computational environments in a multi-
domain infrastructure, in: Proc. of the 3rd IEEE Int. Conf. on
Autonomic Computing (ICAC), Dublin, Ireland, 2006.

[33] A.I. Sundararaj, A. Gupta, P.A. Dinda, Increasing application
performance in virtual environments through run-time inference
and adaptation, in: Proc. of the 14th IEEE Int. Symposium on High
Performance Distributed Computing (HPDC), 2005, pp. 47–58.

[34] VMware, VMware dynamic resource scheduler, 2008. <http://
www.vmware.com/products/vi/vc/drs.html>.

[35] X. Zhu, D. Young, B.J. Watson, Z. Wang, J. Rolia, S. Singhal, B. McKee,
C. Hyser, D. Gmach, R. Gardner, T. Christian, L. Cherkasova, 1000
Islands: integrated capacity and workload management for the next
generation data center, in: Proc. of the 5th IEEE Int. Conf. on
Autonomic Computing (ICAC’08), Chicago, IL, USA, 2008.

[36] B. Urgaonkar, P.J. Shenoy, A. Chandra, P. Goyal, T. Wood, Agile
dynamic provisioning of multi-tier internet applications, ACM
Transactions on Autonomous and Adaptive Systems (TAAS) 3 (1)
(2008).

[37] D. Carrera, M. Steinder, I. Whalley, J. Torres, E. Ayguade, Enabling
resource sharing between transactional and batch workloads using
dynamic application placement, in: Proc. of the 9th ACM/IFIP/
USENIX Int. Conf. on Middleware (Middleware), Leuven, Belgium,
2008.

[38] D.L. Eager, E.D. Lazowska, J. Zahorjan, Adaptive load sharing in
homogeneous distributed systems, IEEE Transactions on Software
Engineering 12 (5) (1986) 662–675.

[39] D.L. Eager, E.D. Lazowska, J. Zahorjan, The limited performance
benefits of migrating active processes for load sharing, ACM
SIGMETRICS Performance Evaluation Review 16 (1) (1988) 63–72.

[40] I. Aib, R. Boutaba, On leveraging policy-based management for
maximizing business profit, IEEE Transactions on Network and
Service Management 4 (3) (2007) 25–39.

[41] N.E. Jerger, N. Vantrease, M. Lipasti, An evaluation of server
consolidation workloads for multi-core designs, in: IEEE Int.
Symposium on Workload Characterization (IISWC 2007), IEEE
Computer Society, Boston, MA, USA, 2007, pp. 47–56.

[42] M.R. Marty, M.D. Hill, Virtual hierarchies to support server
consolidation, in: Proc. of the 34th Annual Int. Symposium on
Computer Architecture (ISCA), ACM, San Diego, California, USA,
2007, pp. 46–56.

Daniel Gmach is a visiting researcher at HP
Labs Palo Alto. Before that he was a Ph.D.
student at the database group of the Techni-
sche Universität München where he gradu-
ated in 2009. He studied computer science at
the University of Passau. His current research
interests are in adaptive resource pool man-
agement of virtualized enterprise data cen-
ters, performance measurement and
monitoring, hosting large-scale enterprise
applications, database systems, and software
engineering principles.

Jerry Rolia is a Principal Scientist in the
Automated Infrastructure Laboratory of
Hewlett-Packard Labs. His research interests
include resource pool management, software
performance engineering, and utility and
cloud computing. Jerry received his Ph.D.
from the University of Toronto ’92, was an
Associate Professor in the department of
Systems and Computer Engineering at Carle-
ton University in Ottawa, Canada until 1999,
and has been with HP Labs since.

D. Gmach et al. / Computer Networks 53 (2009) 2905–2922 2921

Author's personal copy

Ludmila Cherkasova is a senior scientist in
the Enterprise Software and Systems Labora-
tory at HPLabs, Palo Alto. She joined Hewlett-
Packard Laboratories in 1991. Before joining
HPLabs, she was a senior researcher at Insti-
tute of Computing Systems, Russia, and
adjunct associate professor at Novosibirsk
State University. Her current research inter-
ests are in distributed systems, internet
technologies and networking, performance
measurement and monitoring, characteriza-
tion of next generation system workloads and

emerging applications in the large-scale enterprise data centers.

Alfons Kemper studied Computer Science at
the University of Dortmund from 1977–1980
and, thereafter at the University of Southern
California, Los Angeles, USA, from 1980 to
1984. He completed his M.Sc. in 1981 and his
Ph.D. in 1984, both at USC. From 1984 until
1991 he was an Assistant Professor at the
University of Karlsruhe, Germany. In 1991 he
became Associate Professor at the RWTH
Technical University Aachen, Germany. From
1993 until 2004 he was a Full Professor for
Database Systems at the University of Passau,

Germany. Starting in 2004 he holds the Chair for Computer Science with
emphasis on Database Systems at the Technische Universität München

(TUM), Germany. His research interests are in the realization of highly
scalable, distributed database systems, data stream management, peer-
to-peer information systems, grid computing, query optimization and
dynamic information fusion of Internet data sources to cope with the ever
growing data explosion using automated analysis and query processing
techniques. Beside numerous international research publications he is the
author of the market leading German database textbook, which is cur-
rently available in its sixth edition by Oldenbourg-Verlag.

2922 D. Gmach et al. / Computer Networks 53 (2009) 2905–2922

