Large-Scale Matrix Factorization

Rainer Gemulla

November 23, 2012

Outline

Matrix Factorization

Stochastic Gradient Descent

Distributed SGD with MapReduce

Experiments

Summary

Outline

Matrix Factorization

Stochastic Gradient Descent

Distributed SGD with MapReduce

Experiments

Summary

Collaborative Filtering

- Problem
- Set of users
- Set of items (movies, books, jokes, products, stories, ...)
- Feedback (ratings, purchase, click-through, tags, ...)

Collaborative Filtering

- Problem
- Set of users
- Set of items (movies, books, jokes, products, stories, ...)
- Feedback (ratings, purchase, click-through, tags, ...)
- Predict additional items a user may like
- Assumption: Similar feedback \Longrightarrow Similar taste

Collaborative Filtering

- Problem
- Set of users
- Set of items (movies, books, jokes, products, stories, ...)
- Feedback (ratings, purchase, click-through, tags, ...)
- Predict additional items a user may like
- Assumption: Similar feedback \Longrightarrow Similar taste
- Example
$\left.\begin{array}{l}\text { Avatar } \\ \text { Alice } \\ \begin{array}{l}\text { The Matrix }\end{array} \\ \begin{array}{l}\text { Bob } \\ \text { Charlie }\end{array} \\ \\ \hline\end{array} \begin{array}{ccc}3 & 2 & 2 \\ 5 & & 3\end{array}\right)$

Collaborative Filtering

- Problem
- Set of users
- Set of items (movies, books, jokes, products, stories, ...)
- Feedback (ratings, purchase, click-through, tags, ...)
- Predict additional items a user may like
- Assumption: Similar feedback \Longrightarrow Similar taste
- Example
Avatar
Alice
Bob
Charlie Matrix $\left(\begin{array}{ccc}? & 4 & 2 \\ 3 & 2 & ? \\ 5 & ? & 3\end{array}\right)$

Collaborative Filtering

- Problem
- Set of users
- Set of items (movies, books, jokes, products, stories, ...)
- Feedback (ratings, purchase, click-through, tags, ...)
- Predict additional items a user may like
- Assumption: Similar feedback \Longrightarrow Similar taste
- Example
$\left.\begin{array}{l}\text { Avatar } \\ \text { Alice } \\ \text { Bob } \\ \text { Charlie Matrix }\end{array} \begin{array}{ccc}? & \text { Up } \\ 3 & 4 & 2 \\ 5 & 2 & ? \\ 3 & ? & 3\end{array}\right)$
- Netflix competition: 500k users, 20k movies, 100M movie ratings, 3 M question marks

Semantic Factors (Koren et al., 2009)

Latent Factor Models

- Discover latent factors ($r=1$)

	Avatar	The Matrix	Up
Alice		4	2
Bob	3	2	
Charlie	5		3

Latent Factor Models

- Discover latent factors $(r=1)$

	Avatar (2.24)	The Matrix (1.92)	Up (1.18)
Alice (1.98)		$\mathbf{4}$	$\mathbf{2}$
Bob (1.21)	$\mathbf{3}$	$\mathbf{2}$	
Charlie (2.30)	$\mathbf{5}$		$\mathbf{3}$

Latent Factor Models

- Discover latent factors $(r=1)$

	Avatar (2.24)	The Matrix (1.92)	Up (1.18)
Alice		$\mathbf{4}$	$\mathbf{2}$
(1.98)		(3.8)	(2.3)
Bob	$\mathbf{3}$	$\mathbf{2}$	
(1.21)	(2.7)	(2.3)	
Charlie	$\mathbf{5}$		$\mathbf{3}$
(2.30)	(5.2)		(2.7)

- Minimum loss

$$
\min _{\mathbf{W}, \mathbf{H}} \sum_{(i, j) \in Z}\left(\mathbf{V}_{i j}-[\mathbf{W H}]_{i j}\right)^{2}
$$

Latent Factor Models

- Discover latent factors $(r=1)$

	Avatar (2.24)	The Matrix (1.92)	Up (1.18)
Alice	$?$	$\mathbf{4}$	$\mathbf{2}$
(1.98)	(4.4)	(3.8)	(2.3)
Bob	$\mathbf{3}$	$\mathbf{2}$	$?$
(1.21)	(2.7)	(2.3)	(1.4)
Charlie	$\mathbf{5}$	$?$	$\mathbf{3}$
(2.30)	(5.2)	(4.4)	(2.7)

- Minimum loss

$$
\min _{\mathbf{W}, \mathbf{H}} \sum_{(i, j) \in Z}\left(\mathbf{V}_{i j}-[\mathbf{W} \mathbf{H}]_{i j}\right)^{2}
$$

Latent Factor Models

- Discover latent factors $(r=1)$

	Avatar (2.24)	The Matrix (1.92)	Up (1.18)
Alice	$?$	$\mathbf{4}$	$\mathbf{2}$
(1.98)	(4.4)	(3.8)	(2.3)
Bob	$\mathbf{3}$	$\mathbf{2}$	$?$
(1.21)	(2.7)	(2.3)	(1.4)
Charlie	$\mathbf{5}$	$?$	$\mathbf{3}$
(2.30)	(5.2)	(4.4)	(2.7)

- Minimum loss

$$
\min _{\mathbf{w}, \mathbf{H}, \mathbf{u}, \mathbf{m}} \sum_{(i, j) \in Z}\left(\mathbf{V}_{i j}-\mu-\mathbf{u}_{i}-\mathbf{m}_{j}-[\mathbf{W} \mathbf{H}]_{i j}\right)^{2}
$$

- Bias

Latent Factor Models

- Discover latent factors $(r=1)$

	Avatar (2.24)	The Matrix (1.92)	Up (1.18)
Alice	$?$	$\mathbf{4}$	$\mathbf{2}$
(1.98)	(4.4)	(3.8)	(2.3)
Bob	$\mathbf{3}$	$\mathbf{2}$	$?$
(1.21)	(2.7)	(2.3)	(1.4)
Charlie	$\mathbf{5}$	$?$	$\mathbf{3}$
(2.30)	(5.2)	(4.4)	(2.7)

- Minimum loss

$$
\begin{array}{r}
\min _{\mathbf{W}, \mathbf{H}, \mathbf{u}, \mathbf{m}} \sum_{(i, j) \in Z}\left(\mathbf{V}_{i j}-\mu-\mathbf{u}_{i}-\mathbf{m}_{j}-[\mathbf{W} \mathbf{H}]_{i j}\right)^{2} \\
+\lambda(\|\mathbf{W}\|+\|\mathbf{H}\|+\|\mathbf{u}\|+\|\mathbf{m}\|)
\end{array}
$$

- Bias, regularization

Latent Factor Models

- Discover latent factors ($r=1$)

	Avatar (2.24)	The Matrix (1.92)	Up (1.18)
Alice	$?$	$\mathbf{4}$	$\mathbf{2}$
(1.98)	(4.4)	(3.8)	(2.3)
Bob	$\mathbf{3}$	$\mathbf{2}$	$?$
(1.21)	(2.7)	(2.3)	(1.4)
Charlie	$\mathbf{5}$	$?$	$\mathbf{3}$
(2.30)	(5.2)	(4.4)	(2.7)

- Minimum loss

$$
\begin{array}{r}
\min _{\mathbf{w}, \mathbf{H}, \mathbf{u}, \mathbf{m}} \sum_{(i, j, j) \in Z_{t}}\left(\mathbf{V}_{i j}-\mu-\mathbf{u}_{i}(t)-\mathbf{m}_{j}(t)-[\mathbf{W}(t) \mathbf{H}]_{i j}\right)^{2} \\
+\lambda(\|\mathbf{W}(t)\|+\|\mathbf{H}\|+\|\mathbf{u}(t)\|+\|\mathbf{m}(t)\|)
\end{array}
$$

- Bias, regularization, time

Another Matrix

Matrix Reconstruction (unregularized)

Matrix Reconstruction (unregularized)

Matrix Reconstruction (unregularized)

Matrix Reconstruction (unregularized)

Latent Factor Models (unregularized)

Latent Factor Models (unregularized)

Generalized Matrix Factorization

- A general machine learning problem
- Recommender systems, text indexing, face recognition, ...

Generalized Matrix Factorization

- A general machine learning problem
- Recommender systems, text indexing, face recognition, ...
- Training data
- V: $m \times n$ input matrix (e.g., rating matrix)
- Z: training set of indexes in \mathbf{V} (e.g., subset of known ratings)

Generalized Matrix Factorization

- A general machine learning problem
- Recommender systems, text indexing, face recognition, ...
- Training data
- V: $m \times n$ input matrix (e.g., rating matrix)
- Z: training set of indexes in \mathbf{V} (e.g., subset of known ratings)
- Parameter space
- W: row factors (e.g., $m \times r$ latent customer factors)
- H: column factors (e.g., $r \times n$ latent movie factors)

Generalized Matrix Factorization

- A general machine learning problem
- Recommender systems, text indexing, face recognition, ...
- Training data
- V: $m \times n$ input matrix (e.g., rating matrix)
- Z: training set of indexes in \mathbf{V} (e.g., subset of known ratings)
- Parameter space
- W: row factors (e.g., $m \times r$ latent customer factors)
- H: column factors (e.g., $r \times n$ latent movie factors)
- Model
- $L_{i j}\left(\mathbf{W}_{i *}, \mathbf{H}_{* j}\right)$: loss at element (i, j)
- Includes prediction error, regularization, auxiliary information, ...
- Constraints (e.g., non-negativity)

Generalized Matrix Factorization

- A general machine learning problem
- Recommender systems, text indexing, face recognition, ...
- Training data
- V: $m \times n$ input matrix (e.g., rating matrix)
- Z: training set of indexes in \mathbf{V} (e.g., subset of known ratings)
- Parameter space
- W: row factors (e.g., $m \times r$ latent customer factors)
- H: column factors (e.g., $r \times n$ latent movie factors)
- Model
- $L_{i j}\left(\mathbf{W}_{i *}, \mathbf{H}_{* j}\right)$: loss at element (i, j)
- Includes prediction error, regularization, auxiliary information, ...
- Constraints (e.g., non-negativity)
- Find best model

$$
\underset{\mathbf{W}, \mathbf{H}}{\operatorname{argmin}} \sum_{(i, j) \in Z} L_{i j}\left(\mathbf{W}_{i *}, \mathbf{H}_{* j}\right)
$$

Successful Applications

- Movie recommendation (Netflix)
- $>20 \mathrm{M}$ users, $>20 \mathrm{k}$ movies, 4B ratings (projected)
- 60GB data, 15GB model (projected)
- Collaborative filtering
- Website recommendation (Microsoft, WWW10)
- 51M users, 15M URLs, 1.2B clicks
- 17.8 GB data, 161 GB metadata, 49 GB model
- Gaussian non-negative matrix factorization
- News personalization (Google, WWW07)
- Millions of users, millions of stories, ? clicks
- Probabilistic latent semantic indexing

Successful Applications

- Movie recommendation (Netflix)
- $>20 \mathrm{M}$ users, $>20 \mathrm{k}$ movies, 4B ratings (projected)
- 60GB data, 15GB model (projected)
- Collaborative filtering
- Website recommendation (Microsoft, WWW10)
- 51M users, 15M URLs, 1.2B clicks
- 17.8 GB data, 161 GB metadata, 49 GB model
- Gaussian non-negative matrix factorization
- News personalization (Google, WWW07)
- Millions of users, millions of stories, ? clicks
- Probabilistic latent semantic indexing

How to handle such massive scale?

- Big data
- Large models
- Expensive, iterative computations

Outline

Matrix Factorization

Stochastic Gradient Descent

Distributed SGD with MapReduce

Experiments

Summary

Stochastic Gradient Descent

- Find minimum θ^{*} of function L

Stochastic Gradient Descent

- Find minimum θ^{*} of function L
- Pick a starting point θ_{0}

Stochastic Gradient Descent

- Find minimum θ^{*} of function L
- Pick a starting point θ_{0}

Stochastic Gradient Descent

- Find minimum θ^{*} of function L
- Pick a starting point θ_{0}

Stochastic Gradient Descent

- Find minimum θ^{*} of function L
- Pick a starting point θ_{0}
- Approximate gradient $\hat{L}^{\prime}\left(\theta_{0}\right)$

Stochastic Gradient Descent

- Find minimum θ^{*} of function L
- Pick a starting point θ_{0}
- Approximate gradient $\hat{L}^{\prime}\left(\theta_{0}\right)$
- Jump "approximately" downhill

Stochastic Gradient Descent

- Find minimum θ^{*} of function L
- Pick a starting point θ_{0}
- Approximate gradient $\hat{L}^{\prime}\left(\theta_{0}\right)$
- Jump "approximately" downhill
- Stochastic difference equation

$$
\theta_{n+1}=\theta_{n}-\epsilon_{n} \hat{L}^{\prime}\left(\theta_{n}\right)
$$

Stochastic Gradient Descent

- Find minimum θ^{*} of function L
- Pick a starting point θ_{0}
- Approximate gradient $\hat{L}^{\prime}\left(\theta_{0}\right)$
- Jump "approximately" downhill
- Stochastic difference equation

$$
\theta_{n+1}=\theta_{n}-\epsilon_{n} \hat{L}^{\prime}\left(\theta_{n}\right)
$$

- Under certain conditions, asymptotically approximates (continuous) gradient descent

Stochastic Gradient Descent for Matrix Factorization

- Set $\theta=(\mathbf{W}, \mathbf{H})$ and use

$$
L(\theta)=\sum_{(i, j) \in Z} L_{i j}\left(\mathbf{W}_{i *}, \mathbf{H}_{* j}\right)
$$

Stochastic Gradient Descent for Matrix Factorization

- Set $\theta=(\mathbf{W}, \mathbf{H})$ and use

$$
\begin{aligned}
L(\theta) & =\sum_{(i, j) \in Z} L_{i j}\left(\mathbf{W}_{i *}, \mathbf{H}_{* j}\right) \\
L^{\prime}(\theta) & =\sum_{(i, j) \in Z} L_{i j}^{\prime}\left(\mathbf{W}_{i *}, \mathbf{H}_{* j}\right)
\end{aligned}
$$

Stochastic Gradient Descent for Matrix Factorization

- Set $\theta=(\mathbf{W}, \mathbf{H})$ and use

$$
\begin{aligned}
L(\theta) & =\sum_{(i, j) \in Z} L_{i j}\left(\mathbf{W}_{i *}, \mathbf{H}_{* j}\right) \\
L^{\prime}(\theta) & =\sum_{(i, j) \in Z} L_{i j}^{\prime}\left(\mathbf{W}_{i *}, \mathbf{H}_{* j}\right) \\
\hat{L}^{\prime}(\theta, z) & =N L_{i_{z} j_{z}}^{\prime}\left(\mathbf{W}_{i_{z} *}, \mathbf{H}_{* j_{z}}\right),
\end{aligned}
$$

where $N=|Z|$

Stochastic Gradient Descent for Matrix Factorization

- Set $\theta=(\mathbf{W}, \mathbf{H})$ and use

$$
\begin{aligned}
L(\theta) & =\sum_{(i, j) \in Z} L_{i j}\left(\mathbf{W}_{i *}, \mathbf{H}_{* j}\right) \\
L^{\prime}(\theta) & =\sum_{(i, j) \in Z} L_{i j}^{\prime}\left(\mathbf{W}_{i *}, \mathbf{H}_{* j}\right) \\
\hat{L}^{\prime}(\theta, z) & =N L_{i_{z} j_{z}}^{\prime}\left(\mathbf{W}_{i_{z} *}, \mathbf{H}_{* j_{z}}\right),
\end{aligned}
$$

where $N=|Z|$

- SGD epoch

1. Pick a random entry $z \in Z$
2. Compute approximate gradient $\hat{L^{\prime}}(\theta, z)$
3. Update parameters

$$
\theta_{n+1}=\theta_{n}-\epsilon_{n} \hat{L^{\prime}}\left(\theta_{n}, z\right)
$$

4. Repeat N times

Stochastic Gradient Descent for Matrix Factorization

- Set $\theta=(\mathbf{W}, \mathbf{H})$ and use

$$
\begin{aligned}
L(\theta) & =\sum_{(i, j) \in Z} L_{i j}\left(\mathbf{W}_{i *}, \mathbf{H}_{* j}\right) \\
L^{\prime}(\theta) & =\sum_{(i, j) \in Z} L_{i j}^{\prime}\left(\mathbf{W}_{i *}, \mathbf{H}_{* j}\right) \\
\hat{L}^{\prime}(\theta, z) & =N L_{i z_{z}}^{\prime}\left(\mathbf{W}_{i_{z} *}, \mathbf{H}_{* j_{z}}\right),
\end{aligned}
$$

where $N=|Z|$

- SGD epoch

1. Pick a random entry $z \in Z$
2. Compute approximate gradient $\hat{L}^{\prime}(\theta, z)$
3. Update parameters

$$
\theta_{n+1}=\theta_{n}-\epsilon_{n} \hat{L^{\prime}}\left(\theta_{n}, z\right)
$$

4. Repeat N times

Stochastic Gradient Descent on Netflix Data

Outline

Matrix Factorization

Stochastic Gradient Descent

Distributed SGD with MapReduce

Experiments

Summary

Problem Structure

- SGD steps depend on each other

$$
\theta_{n+1}=\theta_{n}-\epsilon_{n} \hat{L}^{\prime}\left(\theta_{n}\right)
$$

- An SGD step on example $z \in Z \ldots$

1. Reads $W_{i_{z} *}$ and $H_{* j_{z}}$
2. Performs gradient computation $L_{i j}^{\prime}\left(W_{i z *}, H_{* j_{z}}\right)$
3. Updates $W_{i_{z} *}$ and $H_{* j_{z}}$

Problem Structure

- SGD steps depend on each other

$$
\theta_{n+1}=\theta_{n}-\epsilon_{n} \hat{L}^{\prime}\left(\theta_{n}\right)
$$

- An SGD step on example $z \in Z \ldots$

1. Reads $W_{i_{z} *}$ and $H_{* j_{z}}$
2. Performs gradient computation $L_{i j}^{\prime}\left(W_{i z *}, H_{* j_{z}}\right)$
3. Updates $W_{i_{z} *}$ and $H_{* j_{z}}$

Problem Structure

- SGD steps depend on each other

$$
\theta_{n+1}=\theta_{n}-\epsilon_{n} \hat{L}^{\prime}\left(\theta_{n}\right)
$$

- An SGD step on example $z \in Z \ldots$

1. Reads $W_{i_{z} *}$ and $H_{* j_{z}}$
2. Performs gradient computation $L_{i j}^{\prime}\left(W_{i z *}, H_{* j_{z}}\right)$
3. Updates $W_{i_{z} *}$ and $H_{* j_{z}}$

Problem Structure

- SGD steps depend on each other

$$
\theta_{n+1}=\theta_{n}-\epsilon_{n} \hat{L}^{\prime}\left(\theta_{n}\right)
$$

- An SGD step on example $z \in Z \ldots$

1. Reads $W_{i_{z} *}$ and $H_{* j_{z}}$
2. Performs gradient computation $L_{i j}^{\prime}\left(W_{i z *}, H_{* j_{z}}\right)$
3. Updates $W_{i_{z} *}$ and $H_{* j_{z}}$

- Not all steps are dependent

Problem Structure

- SGD steps depend on each other

$$
\theta_{n+1}=\theta_{n}-\epsilon_{n} \hat{L}^{\prime}\left(\theta_{n}\right)
$$

- An SGD step on example $z \in Z \ldots$

1. Reads $W_{i_{z} *}$ and $H_{* j_{z}}$
2. Performs gradient computation $L_{i j}^{\prime}\left(W_{i z *}, H_{* j_{z}}\right)$
3. Updates $W_{i_{z} *}$ and $H_{* j_{z}}$

- Not all steps are dependent

Synchronization provides an efficient sharedmemory parallel SGD algorithm.

Exploitation in MapReduce (DSGD: WWW11, Biglearn11)

- Block and distribute the input matrix \mathbf{V}

Exploitation in MapReduce (DSGD: WWW11, Biglearn11)

- Block and distribute the input matrix \mathbf{V}
- High-level approach (Map only)

1. Pick a "diagonal"
2. Run SGD on the diagonal (in parallel)
3. Merge the results
4. Move on to next "diagonal"

- Steps 1-3 form a cycle

Exploitation in MapReduce (DSGD: WWW11, Biglearn11)

- Block and distribute the input matrix \mathbf{V}
- High-level approach (Map only)

1. Pick a "diagonal"
2. Run SGD on the diagonal (in parallel)
3. Merge the results
4. Move on to next "diagonal"

- Steps 1-3 form a cycle

Exploitation in MapReduce (DSGD: WWW11, Biglearn11)

- Block and distribute the input matrix \mathbf{V}
- High-level approach (Map only)

1. Pick a "diagonal"
2. Run SGD on the diagonal (in parallel)
3. Merge the results
4. Move on to next "diagonal"

- Steps 1-3 form a cycle
- Step 2:

Simulate sequential SGD

- Interchangeable blocks
- Throw dice of how many iterations per block
- Throw dice of which step sizes per block

Node 1

Node 2

Node 3

Exploitation in MapReduce (DSGD: WWW11, Biglearn11)

- Block and distribute the input matrix V
- High-level approach (Map only)

1. Pick a "diagonal"
2. Run SGD on the diagonal (in parallel)
3. Merge the results
4. Move on to next "diagonal"

- Steps 1-3 form a cycle
- Step 2:

Simulate sequential SGD

- Interchangeable blocks
- Throw dice of how many iterations per block
- Throw dice of which step sizes per block

Node 1

Node 2

Node 3

Exploitation in MapReduce (DSGD: WWW11, Biglearn11)

- Block and distribute the input matrix V
- High-level approach (Map only)

1. Pick a "diagonal"
2. Run SGD on the diagonal (in parallel)
3. Merge the results
4. Move on to next "diagonal"

- Steps 1-3 form a cycle
- Step 2:

Simulate sequential SGD

- Interchangeable blocks
- Throw dice of how many iterations per block
- Throw dice of which step sizes per block

Node 1

Node 2

Node 3

Exploitation in MapReduce (DSGD: WWW11, Biglearn11)

- Block and distribute the input matrix V
- High-level approach (Map only)

1. Pick a "diagonal"
2. Run SGD on the diagonal (in parallel)
3. Merge the results
4. Move on to next "diagonal"

- Steps 1-3 form a cycle
- Step 2:

Simulate sequential SGD

- Interchangeable blocks
- Throw dice of how many iterations per block
- Throw dice of which step sizes per block
- Instance of "stratified SGD"
- Provably correct

Node 1

Node 2

Node 3

How does it work?

Beyond MapReduce (DSGD++: ICDM12)

Can we do better in an MPI environment (i.e., shared nothing)?

Beyond MapReduce (DSGD++: ICDM12)

Can we do better in an MPI environment (i.e., shared nothing)?
Yes, with careful engineering.

Beyond MapReduce (DSGD++: ICDM12)

Can we do better in an MPI environment (i.e., shared nothing)?
Yes, with careful engineering.

- Prefetch data/parameters for next SGD step(s)

Beyond MapReduce (DSGD++: ICDM12)

Can we do better in an MPI environment (i.e., shared nothing)?
Yes, with careful engineering.

- Prefetch data/parameters for next SGD step(s)
- Exploit multi-core

Beyond MapReduce (DSGD++: ICDM12)

Can we do better in an MPI environment (i.e., shared nothing)?
Yes, with careful engineering.

- Prefetch data/parameters for next SGD step(s)
- Exploit multi-core

Beyond MapReduce (DSGD++: ICDM12)

Can we do better in an MPI environment (i.e., shared nothing)?
Yes, with careful engineering.

- Prefetch data/parameters for next SGD step(s)
- Exploit multi-core

Beyond MapReduce (DSGD++: ICDM12)

Can we do better in an MPI environment (i.e., shared nothing)?
Yes, with careful engineering.

- Prefetch data/parameters for next SGD step(s)
- Exploit multi-core

Beyond MapReduce (DSGD++: ICDM12)

Can we do better in an MPI environment (i.e., shared nothing)?
Yes, with careful engineering.

- Prefetch data/parameters for next SGD step(s)
- Exploit multi-core
- Directly communicate parameters between nodes

Beyond MapReduce (DSGD++: ICDM12)

Can we do better in an MPI environment (i.e., shared nothing)?
Yes, with careful engineering.

- Prefetch data/parameters for next SGD step(s)
- Exploit multi-core
- Directly communicate parameters between nodes
- Overlay subepochs

Beyond MapReduce (DSGD++: ICDM12)

Can we do better in an MPI environment (i.e., shared nothing)?
Yes, with careful engineering.

- Prefetch data/parameters for next SGD step(s)
- Exploit multi-core
- Directly communicate parameters between nodes
- Overlay subepochs
- Overlay computation and communication

Outline

Matrix Factorization

Stochastic Gradient Descent

Distributed SGD with MapReduce

Experiments

Summary

Setup

- Small blade cluster
- 16 compute nodes
- Intel Xeon E5530, 8 cores, 2.4GHz
- 48GB memory
- All algorithms implemented in C++ and MPI
- Alternating least squares (ALS)
- Stochastic gradient descent (SGD)
- Parallel ALS (PALS)
- Parallel SGD (PSGD)
- Distributed ALS (DALS)
- Asynchronous SGD (ASGD)
- Distributed SGD (DSGD-MR)
- Distributed SGD++ (DSGD++)
- Datasets
- Netflix (480k $\times 18 \mathrm{k}, 99 \mathrm{M}$ entries)
- KDD ($1 \mathrm{M} \times 625 \mathrm{k}, 253 \mathrm{M}$ entries)
- Synthetic (varying size, 1B-10B entries)

Example: Netflix data, 4×8 (relatively small, few items)

Example: Netflix data, 4×8 (relatively small, few items)

MapReduce algorithms slow; ASGD best, DSGD++ close.

Example: KDD data, 4×8 (moderatly large, many items)

Example: KDD data, 4×8 (moderatly large, many items)

DSGD++ best, ALS competitive.

Strong scalability: Large syn. data $(10 \mathrm{M} \times 1 \mathrm{M}, 1 \mathrm{~B}$ entries $)$

Strong scalability: Large syn. data $(10 \mathrm{M} \times 1 \mathrm{M}, 1 \mathrm{~B}$ entries $)$

DSGD++ fastest, best scalability.
(DALS converged to bad solution.)

Strong scalability: Huge syn. data $(10 \mathrm{M} \times 1 \mathrm{M}, 10 \mathrm{~B})$

Nodes x cores

Strong scalability: Huge syn. data $(10 \mathrm{M} \times 1 \mathrm{M}, 10 \mathrm{~B})$

Nodes x cores

DSGD++ faster on 4 nodes than any other technique on 8 nodes.

Outline

Matrix Factorization

Stochastic Gradient Descent

Distributed SGD with MapReduce

Experiments

Summary

Summary

- Matrix factorization
- Currently best single approach for collaborative filtering
- Widely applicable via customized loss functions
- Large instances (millions \times millions, billions of entries)
- Distributed Stochastic Gradient Descent
- Simple and versatile
- Fully distributed data/model
- Fully distributed processing
- Fast, good scalability
- DSGD++ variant for shared-nothing (and shared-memory) environments

Summary

- Matrix factorization
- Currently best single approach for collaborative filtering
- Widely applicable via customized loss functions
- Large instances (millions \times millions, billions of entries)
- Distributed Stochastic Gradient Descent
- Simple and versatile
- Fully distributed data/model
- Fully distributed processing
- Fast, good scalability
- DSGD++ variant for shared-nothing (and shared-memory) environments

> Thank you!

