
Large-Scale Matrix Factorization

Rainer Gemulla

November 23, 2012

P. J. Haas Y. Sismanis E. Nijkamp C. Teflioudi F. Makari

Outline

Matrix Factorization

Stochastic Gradient Descent

Distributed SGD with MapReduce

Experiments

Summary

2 / 28

Outline

Matrix Factorization

Stochastic Gradient Descent

Distributed SGD with MapReduce

Experiments

Summary

3 / 28

Collaborative Filtering

I Problem
I Set of users
I Set of items (movies, books, jokes, products, stories, ...)
I Feedback (ratings, purchase, click-through, tags, ...)

I Predict additional items a user may like
I Assumption: Similar feedback =⇒ Similar taste

I Example

I Netflix competition: 500k users, 20k movies, 100M movie
ratings, 3M question marks

4 / 28

Collaborative Filtering

I Problem
I Set of users
I Set of items (movies, books, jokes, products, stories, ...)
I Feedback (ratings, purchase, click-through, tags, ...)

I Predict additional items a user may like
I Assumption: Similar feedback =⇒ Similar taste

I Example

I Netflix competition: 500k users, 20k movies, 100M movie
ratings, 3M question marks

4 / 28

Collaborative Filtering

I Problem
I Set of users
I Set of items (movies, books, jokes, products, stories, ...)
I Feedback (ratings, purchase, click-through, tags, ...)

I Predict additional items a user may like
I Assumption: Similar feedback =⇒ Similar taste

I Example

Avatar The Matrix Up

Alice 4 2
Bob 3 2
Charlie 5 3

I Netflix competition: 500k users, 20k movies, 100M movie
ratings, 3M question marks

4 / 28

Collaborative Filtering

I Problem
I Set of users
I Set of items (movies, books, jokes, products, stories, ...)
I Feedback (ratings, purchase, click-through, tags, ...)

I Predict additional items a user may like
I Assumption: Similar feedback =⇒ Similar taste

I Example

Avatar The Matrix Up

Alice ? 4 2
Bob 3 2 ?
Charlie 5 ? 3

I Netflix competition: 500k users, 20k movies, 100M movie
ratings, 3M question marks

4 / 28

Collaborative Filtering

I Problem
I Set of users
I Set of items (movies, books, jokes, products, stories, ...)
I Feedback (ratings, purchase, click-through, tags, ...)

I Predict additional items a user may like
I Assumption: Similar feedback =⇒ Similar taste

I Example

Avatar The Matrix Up

Alice ? 4 2
Bob 3 2 ?
Charlie 5 ? 3

I Netflix competition: 500k users, 20k movies, 100M movie

ratings, 3M question marks

4 / 28

Semantic Factors (Koren et al., 2009)COVER FE ATURE

computer 44

vector q
i
 ∈ f, and each user u is associ-

ated with a vector p
u
 ∈ f. For a given item

i, the elements of q
i
 measure the extent to

which the item possesses those factors,
positive or negative. For a given user u,
the elements of p

u
 measure the extent of

interest the user has in items that are high
on the corresponding factors, again, posi-
tive or negative. The resulting dot product,
q

i
T p

u
, captures the interaction between user

u and item i—the user’s overall interest in
the item’s characteristics. This approximates
user u’s rating of item i, which is denoted by
r

ui
, leading to the estimate

r̂ui

= q
i
T p

u
. (1)

The major challenge is computing the map-
ping of each item and user to factor vectors
q

i
, p

u
 ∈ f. After the recommender system

completes this mapping, it can easily esti-
mate the rating a user will give to any item
by using Equation 1.

Such a model is closely related to singular value decom-
position (SVD), a well-established technique for identifying
latent semantic factors in information retrieval. Applying
SVD in the collaborative filtering domain requires factoring
the user-item rating matrix. This often raises difficulties
due to the high portion of missing values caused by sparse-
ness in the user-item ratings matrix. Conventional SVD is
undefined when knowledge about the matrix is incom-
plete. Moreover, carelessly addressing only the relatively
few known entries is highly prone to overfitting.

Earlier systems relied on imputation to fill in missing
ratings and make the rating matrix dense.2 However, im-
putation can be very expensive as it significantly increases
the amount of data. In addition, inaccurate imputation
might distort the data considerably. Hence, more recent
works3-6 suggested modeling directly the observed rat-
ings only, while avoiding overfitting through a regularized
model. To learn the factor vectors (p

u
 and q

i
), the system

minimizes the regularized squared error on the set of
known ratings:

min
* *,q p (,)u i ∈

∑
κ

(r
ui
 - q

i
Tp

u
)2 + λ(|| q

i
 ||2 + || p

u
 ||2) (2)

Here, κ is the set of the (u,i) pairs for which r
ui
 is known

(the training set).
The system learns the model by fitting the previously

observed ratings. However, the goal is to generalize those
previous ratings in a way that predicts future, unknown
ratings. Thus, the system should avoid overfitting the
observed data by regularizing the learned parameters,
whose magnitudes are penalized. The constant λ controls

recommendation. These methods have become popular in
recent years by combining good scalability with predictive
accuracy. In addition, they offer much flexibility for model-
ing various real-life situations.

Recommender systems rely on different types of
input data, which are often placed in a matrix with one
dimension representing users and the other dimension
representing items of interest. The most convenient data
is high-quality explicit feedback, which includes explicit
input by users regarding their interest in products. For
example, Netflix collects star ratings for movies, and TiVo
users indicate their preferences for TV shows by pressing
thumbs-up and thumbs-down buttons. We refer to explicit
user feedback as ratings. Usually, explicit feedback com-
prises a sparse matrix, since any single user is likely to
have rated only a small percentage of possible items.

One strength of matrix factorization is that it allows
incorporation of additional information. When explicit
feedback is not available, recommender systems can infer
user preferences using implicit feedback, which indirectly
reflects opinion by observing user behavior including pur-
chase history, browsing history, search patterns, or even
mouse movements. Implicit feedback usually denotes the
presence or absence of an event, so it is typically repre-
sented by a densely filled matrix.

a Basic matRix factoRization modeL
Matrix factorization models map both users and items

to a joint latent factor space of dimensionality f, such that
user-item interactions are modeled as inner products in
that space. Accordingly, each item i is associated with a

Geared
toward
males

Serious

Escapist

The Princess
Diaries

Braveheart

Lethal Weapon

Independence
Day

Ocean’s 11
Sense and
Sensibility

Gus

Dave

Geared
toward

females

Amadeus

The Lion King
Dumb and

Dumber

The Color Purple

figure 2. A simplified illustration of the latent factor approach, which
characterizes both users and movies using two axes—male versus female
and serious versus escapist.

5 / 28

Latent Factor Models

I Discover latent factors (r = 1)

Avatar The Matrix Up

Alice 4 2

Bob 3 2

Charlie 5 3

I Minimum loss

I Bias

6 / 28

Latent Factor Models

I Discover latent factors (r = 1)
Avatar The Matrix Up
(2.24) (1.92) (1.18)

Alice 4 2
(1.98)

Bob 3 2
(1.21)

Charlie 5 3
(2.30)

I Minimum loss

min
W,H

∑
(i ,j)∈Z

(Vij − [WH]ij)
2

I Bias

6 / 28

Latent Factor Models

I Discover latent factors (r = 1)
Avatar The Matrix Up
(2.24) (1.92) (1.18)

Alice 4 2
(1.98) (3.8) (2.3)

Bob 3 2
(1.21) (2.7) (2.3)

Charlie 5 3
(2.30) (5.2) (2.7)

I Minimum loss

min
W,H

∑
(i ,j)∈Z

(Vij − [WH]ij)
2

I Bias

6 / 28

Latent Factor Models

I Discover latent factors (r = 1)
Avatar The Matrix Up
(2.24) (1.92) (1.18)

Alice ? 4 2
(1.98) (4.4) (3.8) (2.3)

Bob 3 2 ?
(1.21) (2.7) (2.3) (1.4)

Charlie 5 ? 3
(2.30) (5.2) (4.4) (2.7)

I Minimum loss

min
W,H

∑
(i ,j)∈Z

(Vij − [WH]ij)
2

I Bias

6 / 28

Latent Factor Models

I Discover latent factors (r = 1)
Avatar The Matrix Up
(2.24) (1.92) (1.18)

Alice ? 4 2
(1.98) (4.4) (3.8) (2.3)

Bob 3 2 ?
(1.21) (2.7) (2.3) (1.4)

Charlie 5 ? 3
(2.30) (5.2) (4.4) (2.7)

I Minimum loss

min
W,H,u,m

∑
(i ,j)∈Z

(Vij − µ− ui −mj − [WH]ij)
2

I Bias
6 / 28

Latent Factor Models

I Discover latent factors (r = 1)
Avatar The Matrix Up
(2.24) (1.92) (1.18)

Alice ? 4 2
(1.98) (4.4) (3.8) (2.3)

Bob 3 2 ?
(1.21) (2.7) (2.3) (1.4)

Charlie 5 ? 3
(2.30) (5.2) (4.4) (2.7)

I Minimum loss

min
W,H,u,m

∑
(i ,j)∈Z

(Vij − µ− ui −mj − [WH]ij)
2

+ λ (‖W‖+ ‖H‖+ ‖u‖+ ‖m‖)

I Bias, regularization
6 / 28

Latent Factor Models

I Discover latent factors (r = 1)
Avatar The Matrix Up
(2.24) (1.92) (1.18)

Alice ? 4 2
(1.98) (4.4) (3.8) (2.3)

Bob 3 2 ?
(1.21) (2.7) (2.3) (1.4)

Charlie 5 ? 3
(2.30) (5.2) (4.4) (2.7)

I Minimum loss

min
W,H,u,m

∑
(i ,j ,t)∈Zt

(Vij − µ− ui (t)−mj(t)− [W(t)H]ij)
2

+ λ (‖W(t)‖+ ‖H‖+ ‖u(t)‖+ ‖m(t)‖)

I Bias, regularization, time
6 / 28

Another Matrix

7 / 28

Matrix Reconstruction (unregularized)

8 / 28

Matrix Reconstruction (unregularized)

8 / 28

Matrix Reconstruction (unregularized)

8 / 28

Matrix Reconstruction (unregularized)

8 / 28

Latent Factor Models (unregularized)
1% 10% 100%

Data

LFM

9 / 28

Latent Factor Models (unregularized)
1% 10% 100%

Data

LFM

SVD

9 / 28

Generalized Matrix Factorization
I A general machine learning problem

I Recommender systems, text indexing, face recognition, . . .

I Training data
I V: m × n input matrix (e.g., rating matrix)
I Z : training set of indexes in V (e.g., subset of known ratings)

I Parameter space
I W: row factors (e.g., m × r latent customer factors)
I H: column factors (e.g., r × n latent movie factors)

I Model
I Lij(Wi∗,H∗j): loss at element (i , j)
I Includes prediction error, regularization,

auxiliary information, . . .
I Constraints (e.g., non-negativity)

I Find best model

argmin
W,H

∑
(i ,j)∈Z

Lij(Wi∗,H∗j)

10 / 28

Generalized Matrix Factorization
I A general machine learning problem

I Recommender systems, text indexing, face recognition, . . .
I Training data

I V: m × n input matrix (e.g., rating matrix)
I Z : training set of indexes in V (e.g., subset of known ratings)

I Parameter space
I W: row factors (e.g., m × r latent customer factors)
I H: column factors (e.g., r × n latent movie factors)

I Model
I Lij(Wi∗,H∗j): loss at element (i , j)
I Includes prediction error, regularization,

auxiliary information, . . .
I Constraints (e.g., non-negativity)

I Find best model

argmin
W,H

∑
(i ,j)∈Z

Lij(Wi∗,H∗j)

10 / 28

V

Vij

Generalized Matrix Factorization
I A general machine learning problem

I Recommender systems, text indexing, face recognition, . . .
I Training data

I V: m × n input matrix (e.g., rating matrix)
I Z : training set of indexes in V (e.g., subset of known ratings)

I Parameter space
I W: row factors (e.g., m × r latent customer factors)
I H: column factors (e.g., r × n latent movie factors)

I Model
I Lij(Wi∗,H∗j): loss at element (i , j)
I Includes prediction error, regularization,

auxiliary information, . . .
I Constraints (e.g., non-negativity)

I Find best model

argmin
W,H

∑
(i ,j)∈Z

Lij(Wi∗,H∗j)

10 / 28

V

Vij
W

H

Wi∗

H∗j

Generalized Matrix Factorization
I A general machine learning problem

I Recommender systems, text indexing, face recognition, . . .
I Training data

I V: m × n input matrix (e.g., rating matrix)
I Z : training set of indexes in V (e.g., subset of known ratings)

I Parameter space
I W: row factors (e.g., m × r latent customer factors)
I H: column factors (e.g., r × n latent movie factors)

I Model
I Lij(Wi∗,H∗j): loss at element (i , j)
I Includes prediction error, regularization,

auxiliary information, . . .
I Constraints (e.g., non-negativity)

I Find best model

argmin
W,H

∑
(i ,j)∈Z

Lij(Wi∗,H∗j)

10 / 28

V

Vij
W

H

Wi∗

H∗j

Generalized Matrix Factorization
I A general machine learning problem

I Recommender systems, text indexing, face recognition, . . .
I Training data

I V: m × n input matrix (e.g., rating matrix)
I Z : training set of indexes in V (e.g., subset of known ratings)

I Parameter space
I W: row factors (e.g., m × r latent customer factors)
I H: column factors (e.g., r × n latent movie factors)

I Model
I Lij(Wi∗,H∗j): loss at element (i , j)
I Includes prediction error, regularization,

auxiliary information, . . .
I Constraints (e.g., non-negativity)

I Find best model

argmin
W,H

∑
(i ,j)∈Z

Lij(Wi∗,H∗j)

10 / 28

V

Vij
W

H

Wi∗

H∗j

Successful Applications

I Movie recommendation (Netflix)
I >20M users, >20k movies, 4B ratings (projected)
I 60GB data, 15GB model (projected)
I Collaborative filtering

I Website recommendation (Microsoft, WWW10)
I 51M users, 15M URLs, 1.2B clicks
I 17.8GB data, 161GB metadata, 49GB model
I Gaussian non-negative matrix factorization

I News personalization (Google, WWW07)
I Millions of users, millions of stories, ? clicks
I Probabilistic latent semantic indexing

How to handle such massive scale?

I Big data

I Large models

I Expensive, iterative computations

11 / 28

Successful Applications

I Movie recommendation (Netflix)
I >20M users, >20k movies, 4B ratings (projected)
I 60GB data, 15GB model (projected)
I Collaborative filtering

I Website recommendation (Microsoft, WWW10)
I 51M users, 15M URLs, 1.2B clicks
I 17.8GB data, 161GB metadata, 49GB model
I Gaussian non-negative matrix factorization

I News personalization (Google, WWW07)
I Millions of users, millions of stories, ? clicks
I Probabilistic latent semantic indexing

How to handle such massive scale?

I Big data

I Large models

I Expensive, iterative computations

11 / 28

Outline

Matrix Factorization

Stochastic Gradient Descent

Distributed SGD with MapReduce

Experiments

Summary

12 / 28

Stochastic Gradient Descent

I Find minimum θ∗ of function L

I Pick a starting point θ0
I Approximate gradient L̂′(θ0)

I Jump “approximately” downhill

I Stochastic difference equation

θn+1 = θn − εnL̂′(θn)

I Under certain conditions,
asymptotically approximates
(continuous) gradient descent

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4
 4.5 4.5

 4.5

 5 5

 5

 5.5

 5
.5

 6

 6

 6.5

 6
.5

 7

 7

 7.5

− 1.0 − 0.5 0.0 0.5 1.0

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

l

13 / 28

Stochastic Gradient Descent

I Find minimum θ∗ of function L

I Pick a starting point θ0

I Approximate gradient L̂′(θ0)

I Jump “approximately” downhill

I Stochastic difference equation

θn+1 = θn − εnL̂′(θn)

I Under certain conditions,
asymptotically approximates
(continuous) gradient descent

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4
 4.5 4.5

 4.5

 5 5

 5

 5.5

 5
.5

 6

 6

 6.5

 6
.5

 7

 7

 7.5

− 1.0 − 0.5 0.0 0.5 1.0

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

l

l

13 / 28

Stochastic Gradient Descent

I Find minimum θ∗ of function L

I Pick a starting point θ0

I Approximate gradient L̂′(θ0)

I Jump “approximately” downhill

I Stochastic difference equation

θn+1 = θn − εnL̂′(θn)

I Under certain conditions,
asymptotically approximates
(continuous) gradient descent

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4
 4.5 4.5

 4.5

 5 5

 5

 5.5

 5
.5

 6

 6

 6.5

 6
.5

 7

 7

 7.5

− 1.0 − 0.5 0.0 0.5 1.0

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

l

l

13 / 28

Stochastic Gradient Descent

I Find minimum θ∗ of function L

I Pick a starting point θ0

I Approximate gradient L̂′(θ0)

I Jump “approximately” downhill

I Stochastic difference equation

θn+1 = θn − εnL̂′(θn)

I Under certain conditions,
asymptotically approximates
(continuous) gradient descent

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4
 4.5 4.5

 4.5

 5 5

 5

 5.5

 5
.5

 6

 6

 6.5

 6
.5

 7

 7

 7.5

− 1.0 − 0.5 0.0 0.5 1.0

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

l

l

13 / 28

Stochastic Gradient Descent

I Find minimum θ∗ of function L

I Pick a starting point θ0
I Approximate gradient L̂′(θ0)

I Jump “approximately” downhill

I Stochastic difference equation

θn+1 = θn − εnL̂′(θn)

I Under certain conditions,
asymptotically approximates
(continuous) gradient descent

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4
 4.5 4.5

 4.5

 5 5

 5

 5.5

 5
.5

 6

 6

 6.5

 6
.5

 7

 7

 7.5

− 1.0 − 0.5 0.0 0.5 1.0

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

l

l

13 / 28

Stochastic Gradient Descent

I Find minimum θ∗ of function L

I Pick a starting point θ0
I Approximate gradient L̂′(θ0)

I Jump “approximately” downhill

I Stochastic difference equation

θn+1 = θn − εnL̂′(θn)

I Under certain conditions,
asymptotically approximates
(continuous) gradient descent

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4
 4.5 4.5

 4.5

 5 5

 5

 5.5

 5
.5

 6

 6

 6.5

 6
.5

 7

 7

 7.5

− 1.0 − 0.5 0.0 0.5 1.0

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

l

l

13 / 28

Stochastic Gradient Descent

I Find minimum θ∗ of function L

I Pick a starting point θ0
I Approximate gradient L̂′(θ0)

I Jump “approximately” downhill

I Stochastic difference equation

θn+1 = θn − εnL̂′(θn)

I Under certain conditions,
asymptotically approximates
(continuous) gradient descent

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4
 4.5 4.5

 4.5

 5 5

 5

 5.5

 5
.5

 6

 6

 6.5

 6
.5

 7

 7

 7.5

− 1.0 − 0.5 0.0 0.5 1.0

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

l

l

13 / 28

Stochastic Gradient Descent

I Find minimum θ∗ of function L

I Pick a starting point θ0
I Approximate gradient L̂′(θ0)

I Jump “approximately” downhill

I Stochastic difference equation

θn+1 = θn − εnL̂′(θn)

I Under certain conditions,
asymptotically approximates
(continuous) gradient descent

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4
 4.5 4.5

 4.5

 5 5

 5

 5.5

 5
.5

 6

 6

 6.5

 6
.5

 7

 7

 7.5

− 1.0 − 0.5 0.0 0.5 1.0

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

l

l

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

stepfun(px, py)

t

q(
t
)

-
q*

l

l

l
ll

l

l
ll

ll
l

l
l
l
lll

l
l
l

l
l
lllllll

llll
llllll

lllll
lllllllll

llll
lllll

lllllll
llll

llllllll
lllllll

llllllllllll
llllllllllllllllllllllllllllllll

llllllllllllllllll
ll

llllllllllllllllllll
llll
llllllllllllllllll

13 / 28

Stochastic Gradient Descent for Matrix Factorization

I Set θ = (W,H) and use

L(θ) =
∑

(i,j)∈Z

Lij(Wi∗,H∗j)

L′(θ) =
∑

(i,j)∈Z

L′ij(Wi∗,H∗j)

L̂′(θ, z) = NL′iz jz (Wiz∗,H∗jz),

where N = |Z |

I SGD epoch

1. Pick a random entry z ∈ Z
2. Compute approximate gradient L̂′(θ, z)
3. Update parameters

θn+1 = θn − εnL̂′(θn, z)

4. Repeat N times

14 / 28

V

W

H

VijWi∗

H∗j

Random data access patterns.

Stochastic Gradient Descent for Matrix Factorization

I Set θ = (W,H) and use

L(θ) =
∑

(i,j)∈Z

Lij(Wi∗,H∗j)

L′(θ) =
∑

(i,j)∈Z

L′ij(Wi∗,H∗j)

L̂′(θ, z) = NL′iz jz (Wiz∗,H∗jz),

where N = |Z |

I SGD epoch

1. Pick a random entry z ∈ Z
2. Compute approximate gradient L̂′(θ, z)
3. Update parameters

θn+1 = θn − εnL̂′(θn, z)

4. Repeat N times

14 / 28

V

W

H

VijWi∗

H∗j

Random data access patterns.

Stochastic Gradient Descent for Matrix Factorization

I Set θ = (W,H) and use

L(θ) =
∑

(i,j)∈Z

Lij(Wi∗,H∗j)

L′(θ) =
∑

(i,j)∈Z

L′ij(Wi∗,H∗j)

L̂′(θ, z) = NL′iz jz (Wiz∗,H∗jz),

where N = |Z |

I SGD epoch

1. Pick a random entry z ∈ Z
2. Compute approximate gradient L̂′(θ, z)
3. Update parameters

θn+1 = θn − εnL̂′(θn, z)

4. Repeat N times

14 / 28

V

W

H

VijWi∗

H∗j

Random data access patterns.

Stochastic Gradient Descent for Matrix Factorization

I Set θ = (W,H) and use

L(θ) =
∑

(i,j)∈Z

Lij(Wi∗,H∗j)

L′(θ) =
∑

(i,j)∈Z

L′ij(Wi∗,H∗j)

L̂′(θ, z) = NL′iz jz (Wiz∗,H∗jz),

where N = |Z |

I SGD epoch

1. Pick a random entry z ∈ Z
2. Compute approximate gradient L̂′(θ, z)
3. Update parameters

θn+1 = θn − εnL̂′(θn, z)

4. Repeat N times

14 / 28

V

W

H

VijWi∗

H∗j

Random data access patterns.

Stochastic Gradient Descent for Matrix Factorization

I Set θ = (W,H) and use

L(θ) =
∑

(i,j)∈Z

Lij(Wi∗,H∗j)

L′(θ) =
∑

(i,j)∈Z

L′ij(Wi∗,H∗j)

L̂′(θ, z) = NL′iz jz (Wiz∗,H∗jz),

where N = |Z |

I SGD epoch

1. Pick a random entry z ∈ Z
2. Compute approximate gradient L̂′(θ, z)
3. Update parameters

θn+1 = θn − εnL̂′(θn, z)

4. Repeat N times

14 / 28

V

W

H

VijWi∗

H∗j

Random data access patterns.

Stochastic Gradient Descent on Netflix Data

0 10 20 30 40 50 60

0.
6

0.
8

1.
0

1.
2

1.
4

epoch

M
ea

n
L

os
s

ll

l

l
l

l
llllll

l
l

l

l
l

l
l

l
l

l
l

ll
llll

llllllllllllllllllllllllllllllll

LBFGS
SGD
ALS

l

15 / 28

Outline

Matrix Factorization

Stochastic Gradient Descent

Distributed SGD with MapReduce

Experiments

Summary

16 / 28

Problem Structure

I SGD steps depend on each other

θn+1 = θn − εnL̂′(θn)

I An SGD step on example z ∈ Z . . .
1. Reads Wiz∗ and H∗jz
2. Performs gradient computation L′ij(Wiz∗,H∗jz)
3. Updates Wiz∗ and H∗jz

I Not all steps are dependent

V

W

H

znWi∗

H∗j

17 / 28

Synchronization pro-
vides an efficient shared-
memory parallel SGD
algorithm.

Problem Structure

I SGD steps depend on each other

θn+1 = θn − εnL̂′(θn)

I An SGD step on example z ∈ Z . . .
1. Reads Wiz∗ and H∗jz
2. Performs gradient computation L′ij(Wiz∗,H∗jz)
3. Updates Wiz∗ and H∗jz

I Not all steps are dependent

V

W

H

znWi∗

H∗j

zn+1

H∗j

17 / 28

Synchronization pro-
vides an efficient shared-
memory parallel SGD
algorithm.

Problem Structure

I SGD steps depend on each other

θn+1 = θn − εnL̂′(θn)

I An SGD step on example z ∈ Z . . .
1. Reads Wiz∗ and H∗jz
2. Performs gradient computation L′ij(Wiz∗,H∗jz)
3. Updates Wiz∗ and H∗jz

I Not all steps are dependent

V

W

H

znWi∗

H∗j

zn+1Wi∗

17 / 28

Synchronization pro-
vides an efficient shared-
memory parallel SGD
algorithm.

Problem Structure

I SGD steps depend on each other

θn+1 = θn − εnL̂′(θn)

I An SGD step on example z ∈ Z . . .
1. Reads Wiz∗ and H∗jz
2. Performs gradient computation L′ij(Wiz∗,H∗jz)
3. Updates Wiz∗ and H∗jz

I Not all steps are dependent

V

W

H

znWi∗

H∗j

zn+1

17 / 28

Synchronization pro-
vides an efficient shared-
memory parallel SGD
algorithm.

Problem Structure

I SGD steps depend on each other

θn+1 = θn − εnL̂′(θn)

I An SGD step on example z ∈ Z . . .
1. Reads Wiz∗ and H∗jz
2. Performs gradient computation L′ij(Wiz∗,H∗jz)
3. Updates Wiz∗ and H∗jz

I Not all steps are dependent

V

W

H

znWi∗

H∗j

zn+1

17 / 28

Synchronization pro-
vides an efficient shared-
memory parallel SGD
algorithm.

Exploitation in MapReduce (DSGD: WWW11, Biglearn11)

I Block and distribute the input matrix V

I High-level approach (Map only)

1. Pick a “diagonal”
2. Run SGD on the diagonal (in parallel)
3. Merge the results
4. Move on to next “diagonal”

I Steps 1–3 form a cycle

I Step 2:
Simulate sequential SGD

I Interchangeable blocks
I Throw dice of how

many iterations per block
I Throw dice of which

step sizes per block

I Instance of “stratified SGD”

I Provably correct

18 / 28

Node 1

Node 2

Node 3

W1

H1

V11 V12 V13

W2

H2

V21 V22 V23

W3

H3

V31 V32 V33

Exploitation in MapReduce (DSGD: WWW11, Biglearn11)

I Block and distribute the input matrix V
I High-level approach (Map only)

1. Pick a “diagonal”
2. Run SGD on the diagonal (in parallel)
3. Merge the results
4. Move on to next “diagonal”

I Steps 1–3 form a cycle

I Step 2:
Simulate sequential SGD

I Interchangeable blocks
I Throw dice of how

many iterations per block
I Throw dice of which

step sizes per block

I Instance of “stratified SGD”

I Provably correct

18 / 28

Node 1

Node 2

Node 3

W1

H1

V11 V12 V13

W2

H2

V21 V22 V23

W3

H3

V31 V32 V33

Exploitation in MapReduce (DSGD: WWW11, Biglearn11)

I Block and distribute the input matrix V
I High-level approach (Map only)

1. Pick a “diagonal”
2. Run SGD on the diagonal (in parallel)
3. Merge the results
4. Move on to next “diagonal”

I Steps 1–3 form a cycle

I Step 2:
Simulate sequential SGD

I Interchangeable blocks
I Throw dice of how

many iterations per block
I Throw dice of which

step sizes per block

I Instance of “stratified SGD”

I Provably correct

18 / 28

Node 1

Node 2

Node 3

W1

H1

V11

W2

H2

V22

W3

H3

V33

Exploitation in MapReduce (DSGD: WWW11, Biglearn11)

I Block and distribute the input matrix V
I High-level approach (Map only)

1. Pick a “diagonal”
2. Run SGD on the diagonal (in parallel)
3. Merge the results
4. Move on to next “diagonal”

I Steps 1–3 form a cycle

I Step 2:
Simulate sequential SGD

I Interchangeable blocks
I Throw dice of how

many iterations per block
I Throw dice of which

step sizes per block

I Instance of “stratified SGD”

I Provably correct

18 / 28

Node 1

Node 2

Node 3

W1

H1

V11

W2

H2

V22

W3

H3

V33

Exploitation in MapReduce (DSGD: WWW11, Biglearn11)

I Block and distribute the input matrix V
I High-level approach (Map only)

1. Pick a “diagonal”
2. Run SGD on the diagonal (in parallel)
3. Merge the results
4. Move on to next “diagonal”

I Steps 1–3 form a cycle

I Step 2:
Simulate sequential SGD

I Interchangeable blocks
I Throw dice of how

many iterations per block
I Throw dice of which

step sizes per block

I Instance of “stratified SGD”

I Provably correct

18 / 28

Node 1

Node 2

Node 3

W1

H1

V11

W2

H2

V22

W3

H3

V33

V11 V12 V13

V21 V22 V23

V31 V32 V33

Exploitation in MapReduce (DSGD: WWW11, Biglearn11)

I Block and distribute the input matrix V
I High-level approach (Map only)

1. Pick a “diagonal”
2. Run SGD on the diagonal (in parallel)
3. Merge the results
4. Move on to next “diagonal”

I Steps 1–3 form a cycle

I Step 2:
Simulate sequential SGD

I Interchangeable blocks
I Throw dice of how

many iterations per block
I Throw dice of which

step sizes per block

I Instance of “stratified SGD”

I Provably correct

18 / 28

Node 1

Node 2

Node 3

W1

H1

V11

W2

H2

V22

W3

H3

V33

V12

V23

V31

Exploitation in MapReduce (DSGD: WWW11, Biglearn11)

I Block and distribute the input matrix V
I High-level approach (Map only)

1. Pick a “diagonal”
2. Run SGD on the diagonal (in parallel)
3. Merge the results
4. Move on to next “diagonal”

I Steps 1–3 form a cycle

I Step 2:
Simulate sequential SGD

I Interchangeable blocks
I Throw dice of how

many iterations per block
I Throw dice of which

step sizes per block

I Instance of “stratified SGD”

I Provably correct

18 / 28

Node 1

Node 2

Node 3

W1

H1

V11

W2

H2

V22

W3

H3

V33

V12

V23

V31

How does it work?

19 / 28

L = 0.3L1 + 0.7L2

 0.5

 1

− 0.6 − 0.4 − 0.2 0.0 0.2 0.4 0.6

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

l

l

l

l

L1

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.2

 1.4

 1.4

 1.6

 1.6

 1.8

 1.8

 2

 2

 2.2

 2.2

− 0.6 − 0.4 − 0.2 0.0 0.2 0.4 0.6

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

l

l

l

l

L2

Cycle 0

− 0.6 − 0.4 − 0.2 0.0 0.2 0.4 0.6

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

Index

N
A

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 2

l

l

l

l

How does it work?

19 / 28

L = 0.3L1 + 0.7L2

 0.5

 1

− 0.6 − 0.4 − 0.2 0.0 0.2 0.4 0.6

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

l

l

l

l

L1

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.2

 1.4

 1.4

 1.6

 1.6

 1.8

 1.8

 2

 2

 2.2

 2.2

− 0.6 − 0.4 − 0.2 0.0 0.2 0.4 0.6

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

l

l

l

l

L2

Cycle 1

− 0.6 − 0.4 − 0.2 0.0 0.2 0.4 0.6

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

Index

N
A

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 2

l

l

l

l

How does it work?

19 / 28

L = 0.3L1 + 0.7L2

 0.5

 1

− 0.6 − 0.4 − 0.2 0.0 0.2 0.4 0.6

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

l

l

l

l

L1

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.2

 1.4

 1.4

 1.6

 1.6

 1.8

 1.8

 2

 2

 2.2

 2.2

− 0.6 − 0.4 − 0.2 0.0 0.2 0.4 0.6

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

l

l

l

l

L2

Cycle 2

− 0.6 − 0.4 − 0.2 0.0 0.2 0.4 0.6

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

Index

N
A

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 2

l

l

l

l

How does it work?

19 / 28

L = 0.3L1 + 0.7L2

 0.5

 1

− 0.6 − 0.4 − 0.2 0.0 0.2 0.4 0.6

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

l

l

l

l

L1

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.2

 1.4

 1.4

 1.6

 1.6

 1.8

 1.8

 2

 2

 2.2

 2.2

− 0.6 − 0.4 − 0.2 0.0 0.2 0.4 0.6

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

l

l

l

l

L2

Cycle 3

− 0.6 − 0.4 − 0.2 0.0 0.2 0.4 0.6

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

Index

N
A

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 2

l

l

l

l

How does it work?

19 / 28

L = 0.3L1 + 0.7L2

 0.5

 1

− 0.6 − 0.4 − 0.2 0.0 0.2 0.4 0.6

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

l

l

l

l

L1

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.2

 1.4

 1.4

 1.6

 1.6

 1.8

 1.8

 2

 2

 2.2

 2.2

− 0.6 − 0.4 − 0.2 0.0 0.2 0.4 0.6

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

l

l

l

l

L2

Cycle 4

− 0.6 − 0.4 − 0.2 0.0 0.2 0.4 0.6

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

Index

N
A

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 2

l

l

l

l

How does it work?

19 / 28

L = 0.3L1 + 0.7L2

 0.5

 1

− 0.6 − 0.4 − 0.2 0.0 0.2 0.4 0.6

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

l

l

l

l

L1

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.2

 1.4

 1.4

 1.6

 1.6

 1.8

 1.8

 2

 2

 2.2

 2.2

− 0.6 − 0.4 − 0.2 0.0 0.2 0.4 0.6

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

l

l

l

l

L2

Cycle 5

− 0.6 − 0.4 − 0.2 0.0 0.2 0.4 0.6

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

Index

N
A

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 2

l

l

l

l

How does it work?

19 / 28

L = 0.3L1 + 0.7L2

 0.5

 1

− 0.6 − 0.4 − 0.2 0.0 0.2 0.4 0.6

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

l

l

l

l

L1

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.2

 1.4

 1.4

 1.6

 1.6

 1.8

 1.8

 2

 2

 2.2

 2.2

− 0.6 − 0.4 − 0.2 0.0 0.2 0.4 0.6

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

l

l

l

l

L2

Cycle 6

− 0.6 − 0.4 − 0.2 0.0 0.2 0.4 0.6

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

Index

N
A

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 2

l

l

l

l

How does it work?

19 / 28

L = 0.3L1 + 0.7L2

 0.5

 1

− 0.6 − 0.4 − 0.2 0.0 0.2 0.4 0.6

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

l

l

l

l

L1

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.2

 1.4

 1.4

 1.6

 1.6

 1.8

 1.8

 2

 2

 2.2

 2.2

− 0.6 − 0.4 − 0.2 0.0 0.2 0.4 0.6

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

l

l

l

l

L2

Cycle 100

− 0.6 − 0.4 − 0.2 0.0 0.2 0.4 0.6

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

Index

N
A

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 2

l

l

l

l

How does it work?

19 / 28

L = 0.3L1 + 0.7L2

 0.5

 1

− 0.6 − 0.4 − 0.2 0.0 0.2 0.4 0.6

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

l

l

l

l

L1

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.2

 1.4

 1.4

 1.6

 1.6

 1.8

 1.8

 2

 2

 2.2

 2.2

− 0.6 − 0.4 − 0.2 0.0 0.2 0.4 0.6

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

l

l

l

l

L2

Cycle 100

− 0.6 − 0.4 − 0.2 0.0 0.2 0.4 0.6

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

Index

N
A

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 2

l

l

l

l

How does it work?

19 / 28

L = 0.3L1 + 0.7L2

 0.5

 1

− 0.6 − 0.4 − 0.2 0.0 0.2 0.4 0.6

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

l

l

l

l

L1

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.2

 1.4

 1.4

 1.6

 1.6

 1.8

 1.8

 2

 2

 2.2

 2.2

− 0.6 − 0.4 − 0.2 0.0 0.2 0.4 0.6

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

l

l

l

l

L2

Cycle 100

− 0.6 − 0.4 − 0.2 0.0 0.2 0.4 0.6

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

Index

N
A

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 2

l

l

l

l

Beyond MapReduce (DSGD++: ICDM12)

Can we do better in an MPI environment (i.e., shared nothing)?

Yes, with careful engineering.

I Prefetch data/parameters for next SGD step(s)
I Exploit multi-core
I Directly communicate parameters between nodes
I Overlay subepochs
I Overlay computation and communication

Node 1 (yellow)

Node 2 (green)

Node 3 (blue)W3

H3

Subep. 1
(running)

V

W

H

zn

zn+1

20 / 28

Beyond MapReduce (DSGD++: ICDM12)

Can we do better in an MPI environment (i.e., shared nothing)?

Yes, with careful engineering.

I Prefetch data/parameters for next SGD step(s)
I Exploit multi-core
I Directly communicate parameters between nodes
I Overlay subepochs
I Overlay computation and communication

Node 1 (yellow)

Node 2 (green)

Node 3 (blue)W3

H3

Subep. 1
(running)

V

W

H

zn

zn+1

20 / 28

Beyond MapReduce (DSGD++: ICDM12)

Can we do better in an MPI environment (i.e., shared nothing)?

Yes, with careful engineering.

I Prefetch data/parameters for next SGD step(s)

I Exploit multi-core
I Directly communicate parameters between nodes
I Overlay subepochs
I Overlay computation and communication

Node 1 (yellow)

Node 2 (green)

Node 3 (blue)W3

H3

Subep. 1
(running)

V

W

H

zn

zn+1

20 / 28

Beyond MapReduce (DSGD++: ICDM12)

Can we do better in an MPI environment (i.e., shared nothing)?

Yes, with careful engineering.

I Prefetch data/parameters for next SGD step(s)
I Exploit multi-core

I Directly communicate parameters between nodes
I Overlay subepochs
I Overlay computation and communication

Node 1 (yellow)

Node 2 (green)

Node 3 (blue)W3

H3

Subep. 1
(running)

V

W

H

zn

zn+1

20 / 28

Beyond MapReduce (DSGD++: ICDM12)

Can we do better in an MPI environment (i.e., shared nothing)?

Yes, with careful engineering.

I Prefetch data/parameters for next SGD step(s)
I Exploit multi-core

I Directly communicate parameters between nodes
I Overlay subepochs
I Overlay computation and communication

Node 1 (yellow)

Node 2 (green)

Node 3 (blue)W3

H3

Subep. 1
(running)

W1

H1

Subep. 1
(running)

W2

H2

Subep. 1
(running)

V

W

H

zn

zn+1

20 / 28

Beyond MapReduce (DSGD++: ICDM12)

Can we do better in an MPI environment (i.e., shared nothing)?

Yes, with careful engineering.

I Prefetch data/parameters for next SGD step(s)
I Exploit multi-core

I Directly communicate parameters between nodes
I Overlay subepochs
I Overlay computation and communication

Node 1 (yellow)

Node 2 (green)

Node 3 (blue)W3

H3

Subep. 1
(running)

W1

H1

Subep. 1
(running)

W2

H2

Subep. 1
(running)

W2

H2

W1

H1

Subep. 1
(done)

Subep. 1
(done)

V

W

H

zn

zn+1

20 / 28

Beyond MapReduce (DSGD++: ICDM12)

Can we do better in an MPI environment (i.e., shared nothing)?

Yes, with careful engineering.

I Prefetch data/parameters for next SGD step(s)
I Exploit multi-core

I Directly communicate parameters between nodes
I Overlay subepochs
I Overlay computation and communication

Node 1 (yellow)

Node 2 (green)

Node 3 (blue)W3

H3

Subep. 1
(running)

W1

H1

Subep. 1
(running)

W2

H2

Subep. 1
(running)

W2

H2

W1

H1

Subep. 1
(done)

Subep. 1
(done)

Subep. 2
(waiting)

V

W

H

zn

zn+1

20 / 28

Beyond MapReduce (DSGD++: ICDM12)

Can we do better in an MPI environment (i.e., shared nothing)?

Yes, with careful engineering.

I Prefetch data/parameters for next SGD step(s)
I Exploit multi-core
I Directly communicate parameters between nodes

I Overlay subepochs
I Overlay computation and communication

Node 1 (yellow)

Node 2 (green)

Node 3 (blue)W3

H3

Subep. 1
(running)

W1

H1

Subep. 1
(running)

W2

H2

Subep. 1
(running)

W1

H1

Subep. 1
(done)

Subep. 1
(done)

Subep. 2
(waiting)

W2

H2

V

W

H

zn

zn+1

20 / 28

Beyond MapReduce (DSGD++: ICDM12)

Can we do better in an MPI environment (i.e., shared nothing)?

Yes, with careful engineering.

I Prefetch data/parameters for next SGD step(s)
I Exploit multi-core
I Directly communicate parameters between nodes
I Overlay subepochs

I Overlay computation and communication

Node 1 (yellow)

Node 2 (green)

Node 3 (blue)W3

H3

Subep. 1
(running)

W1

H1

Subep. 1
(running)

W2

H2

Subep. 1
(running)

W1

H1

Subep. 1
(done)

Subep. 1
(done)

W2

H2

Subep. 2
(running)

V

W

H

zn

zn+1

20 / 28

Beyond MapReduce (DSGD++: ICDM12)

Can we do better in an MPI environment (i.e., shared nothing)?

Yes, with careful engineering.

I Prefetch data/parameters for next SGD step(s)
I Exploit multi-core
I Directly communicate parameters between nodes
I Overlay subepochs
I Overlay computation and communication

Node 1 (yellow)

Node 2 (green)

Node 3 (blue)W3

H3

Subep. 1
(running)

W1

H1

Subep. 1
(running)

W2

H2

Subep. 1
(running)

W1

H1

Subep. 1
(done)

Subep. 1
(done)

W2

H2

Subep. 2
(running)

V

W

H

zn

zn+1

20 / 28

Outline

Matrix Factorization

Stochastic Gradient Descent

Distributed SGD with MapReduce

Experiments

Summary

21 / 28

Setup

I Small blade cluster
I 16 compute nodes
I Intel Xeon E5530, 8 cores, 2.4GHz
I 48GB memory

I All algorithms implemented in C++ and MPI
I Alternating least squares (ALS)
I Stochastic gradient descent (SGD)
I Parallel ALS (PALS)
I Parallel SGD (PSGD)
I Distributed ALS (DALS)
I Asynchronous SGD (ASGD)
I Distributed SGD (DSGD-MR)
I Distributed SGD++ (DSGD++)

I Datasets
I Netflix (480k× 18k, 99M entries)
I KDD (1M× 625k, 253M entries)
I Synthetic (varying size, 1B–10B entries)

22 / 28

Example: Netflix data, 4x8 (relatively small, few items)

0 200 400 600 800

8
9

10
11

12

Time (s)

L
os

s
(x

10
7)

DALS
ASGD
DSGD−MR
DSGD++

MapReduce algorithms slow; ASGD best, DSGD++ close.

23 / 28

Example: Netflix data, 4x8 (relatively small, few items)

0 200 400 600 800

8
9

10
11

12

Time (s)

L
os

s
(x

10
7)

DALS
ASGD
DSGD−MR
DSGD++

MapReduce algorithms slow; ASGD best, DSGD++ close.

23 / 28

Example: KDD data, 4x8 (moderatly large, many items)

0 500 1000 1500 2000 2500 3000

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

Time (s)

L
os

s
(x

10
11

)
DALS
ASGD
DSGD−MR
DSGD++

DSGD++ best, ALS competitive.

24 / 28

Example: KDD data, 4x8 (moderatly large, many items)

0 500 1000 1500 2000 2500 3000

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

Time (s)

L
os

s
(x

10
11

)
DALS
ASGD
DSGD−MR
DSGD++

DSGD++ best, ALS competitive.

24 / 28

Strong scalability: Large syn. data (10M× 1M, 1B entries)

1x8 2x8 4x8 8x8

Nodes x cores

T
ot

al
 t

im
e

(h
)

0
2

4
6

8
10

12
14 16.8

PSGD
DALS
ASGD
DSGD−MR
DSGD++

DSGD++ fastest, best scalability.

(DALS converged to bad solution.)

25 / 28

Strong scalability: Large syn. data (10M× 1M, 1B entries)

1x8 2x8 4x8 8x8

Nodes x cores

T
ot

al
 t

im
e

(h
)

0
2

4
6

8
10

12
14 16.8

PSGD
DALS
ASGD
DSGD−MR
DSGD++

DSGD++ fastest, best scalability.

(DALS converged to bad solution.)

25 / 28

Strong scalability: Huge syn. data (10M× 1M, 10B)

8x8 16x8

Nodes x cores

0
1

2
3

4

DALS
ASGD
DSGD−MR
DSGD++

7.98 8.6

In
su

ff
ic

ie
nt

 m
em

or
y

DSGD++ faster on 4 nodes than any other technique on 8 nodes.

(ASGD converged to bad solution.)

26 / 28

Strong scalability: Huge syn. data (10M× 1M, 10B)

8x8 16x8

Nodes x cores

0
1

2
3

4

DALS
ASGD
DSGD−MR
DSGD++

7.98 8.6

In
su

ff
ic

ie
nt

 m
em

or
y

DSGD++ faster on 4 nodes than any other technique on 8 nodes.

(ASGD converged to bad solution.)
26 / 28

Outline

Matrix Factorization

Stochastic Gradient Descent

Distributed SGD with MapReduce

Experiments

Summary

27 / 28

Summary

I Matrix factorization
I Currently best single approach for collaborative filtering
I Widely applicable via customized loss functions
I Large instances (millions × millions, billions of entries)

I Distributed Stochastic Gradient Descent
I Simple and versatile
I Fully distributed data/model
I Fully distributed processing
I Fast, good scalability

I DSGD++ variant for shared-nothing (and shared-memory)
environments

Thank you!

28 / 28

Summary

I Matrix factorization
I Currently best single approach for collaborative filtering
I Widely applicable via customized loss functions
I Large instances (millions × millions, billions of entries)

I Distributed Stochastic Gradient Descent
I Simple and versatile
I Fully distributed data/model
I Fully distributed processing
I Fast, good scalability

I DSGD++ variant for shared-nothing (and shared-memory)
environments

Thank you!
28 / 28

	Matrix Factorization
	Stochastic Gradient Descent
	Distributed SGD with MapReduce
	Experiments
	Summary

