
1

Cloud-Based Data Processing

Introduction

Jana Giceva

Jana Giceva

Chair for Database Systems

Boltzmannstr. 3, Office: 02.11.043

jana.giceva@in.tum.de

Academic Background:

 2011 – 2017 PhD in Computer Science at ETH Zurich (topic: DB/OS co-design)

 2017 – 2019 Lecturer in Department of Computing at Imperial College London

 Since 2020 Assistant Professor for Database Systems at TUM

Connections with Industry:

 Held roles with Oracle Labs and Microsoft Research in the USA in 2013 and 2014

 PhD Fellowship from Google in 2014

 Early Career Faculty Award from VMware in 2019

About me

2

mailto:jana.giceva@in.tum.de

 Learn how to design scalable and efficient cloud-native systems

 Understand the demands of novel (data) workloads and the economies and challenges at scale

 Get to know the internals of modern data centers and emerging technologies and trends

 Learn the fundamental principles for building scalable system software

 Build a cloud-native multi-tier data processing system:

 Work across multiple layers of the stack: storage, synchronization, caching, compute, etc.

 Tailor the system for given workload requirements

 Think in terms of performance, scalability, fault tolerance, elasticity,

high availability, cost, privacy, etc.

 Use modern cloud constructs like containers or serverless functions.

 Apply the knowledge with hands-on work:

 Modular homework assignments

 Individual project work

What this course is about

Motivation

4

 Why should we care about the cloud?

 What impact does the cloud have on system development?

 Why should we focus on data-processing in particular?

Motivation

5

Why is Cloud important?

6

 The internet has around 4.5 billion users today, and the number is still growing

 Digitalization of society and the Cloud transform whole industries

 25% increase in cloud usage during the pandemic (src: Gartner 2022)

US Cloud Computing market (USD billion),

expected to double in 10 years.

h
tt

p
s
:/
/9

9
fi
rm

s
.c

o
m

/b
lo

g
/g

o
o

g
le

-s
e

a
rc

h
-s

ta
ti
s
ti
c
s

h
tt
p
s
:/
/w

w
w

.g
ra

n
d
v
ie

w
re

s
e
a
rc

h
.c

o
m

/i
n
d
u
s
tr

y
-

a
n
a
ly

s
is

/c
lo

u
d

-c
o
m

p
u
ti
n
g
-i
n
d
u
s
tr

y

https://www.grandviewresearch.com/industry-analysis/cloud-computing-industry

 Cloud helps in fast dissemination of new technologies

 Easy, fast and cheap exposure to new trends available for everyone

 Accelerators

EC2 offers instances with the

latest GPUs, custom ML

inference ASICs or FPGA, TPUs

How the Cloud impacts technology development?

7

Fast network interconnects

c6gn.16xlarge already offers

64 cores, 128 GiB memory and

100Gbps network for $2.8 per hour

Latest storage technologies

Microsoft’s revolutionary glass

storage with Project Silica

or Holographic storage (HSD)

https://101.datascience.community/2019/11/14/storing-data-on-a-piece-of-glass-microsofts-project-silica/

 Influence the hardware landscape

 Innovation from novel chip design, to new switches and network fabrics, incl. storage technologies

 Control the full software stack

 they can change or customize it (OS, virtualization, containers, etc.)

 Introduce or popularize new programming methodologies and paradigms

 Map-Reduce, actor-based programming models, microservices and serverless, etc.

 Revolutionize how we approach application design and implementation

 Scale, elasticity, cost, privacy, etc.

Cloud providers control the full stack

8

How are things different at scale?

9

As reported by Google (slides

from Jeff Dean) in 2010:

https://static.googleusercontent.com/media/research.google.com/en//people/jeff/Stanford-DL-Nov-2010.pdf

Focus is more on meeting the

SLOs (service-level objectives)

with respect to:

• Performance (latency)

• High availability

• Efficiency

• Elasticity

Most complexity is absorbed by

the cloud system software

infrastructure

https://static.googleusercontent.com/media/research.google.com/en/people/jeff/Stanford-DL-Nov-2010.pdf

 Incentives highly driven by reduction of cost

 Skeptics primarily worried about cloud’s privacy and security.

But it is not just scale!

10

https://blogs.gartner.com/marco-meinardi/2018/11/30/public-

cloud-cheaper-than-running-your-data-center/

https://dzone.com/articles/data-security-

an-integral-aspect-of-cloud-computin

https://blogs.gartner.com/marco-meinardi/2018/11/30/public-cloud-cheaper-than-running-your-data-center/
https://dzone.com/articles/data-security-an-integral-aspect-of-cloud-computin

 Surge in data volumes produced and consumed

Why focus on data-processing?

11

 Data-processing still the dominant workload:

 Databases, analytics, streaming, etc.

https://www.techspot.com/news/83646-companies-taking-

advantage-different-cloud-options-putting-different.html

https://www.seagate.com/files/www-content/our-

story/trends/files/dataage-idc-report-final.pdf

https://www.techspot.com/news/83646-companies-taking-advantage-different-cloud-options-putting-different.html
https://www.seagate.com/files/www-content/our-story/trends/files/dataage-idc-report-final.pdf

Course administrivia

12

 Data centers and cloud computing

 Distributed data basics (partitioning, replication, fault-tolerance, consistency, consensus)

 Design principles for cloud-based applications

 Design and build scalable systems for the cloud:

 Covering storage, query, and transaction processing.

 Trends, emerging technologies and their impact on the future of cloud-systems

 Hardware and accelerators, resource disaggregation, software-defined networking/storage

Special focus on state-of-the-art systems that are used in production

Course content

13

Lecture:

 In-person lectures on Thursdays 2-4pm (Galileo 8120.EG.001)

 Slides uploaded on course web-page and moodle (by Thursday noon).

 Old lecture video recordings from WS 20/21 available on moodle.

 Course website: https://db.in.tum.de/teaching/ws2324/clouddataprocessing/

 Please check regularly for updates

Tutorials:

 In-person tutorials after the lectures

 Thursdays 4-5pm (Galileo 8120.EG.001) – not recorded

 TAs for the course are

Michalis Georgoulakis (michalis.georgoulakis@tum.de)

Tobias Götz (goetzt@in.tum.de)

 First session: today for introduction, Q&A session and general set-up

 Consider that exercise material is part of the course content!

Course Organization

14

https://db.in.tum.de/teaching/ws2324/clouddataprocessing/
https://db.in.tum.de/teaching/ws2324/clouddataprocessing/
https://db.in.tum.de/teaching/ws2324/clouddataprocessing/
mailto:michalis.georgoulakis@tum.de
mailto:goetzt@in.tum.de

 The main goal of the course is critical thinking and analyzing the main design decisions behind

scalable systems and understanding what it takes to build them.

 The assignments will give you a range of different skillsets:

1. Analysis on different design decisions on how to build a data processing system in the cloud

2. Measurement study on existing cloud services, system design and back-of-the-envelope calc.

3. Hands-on implementation of a data processing task that uses the cloud services you benchmarked.

 You can then apply them for your project in the last 5 weeks of the course.

Assignments and Project

15

 Bonus: extra points for the 90min final exam

 Maximum bonus: 14 points

 Homework assignments: up to 7 points

 Project: up to 7 points

 Passing criteria:

 Exam needs to be passed so the bonus points can be accounted for

 For the homework assignments – details later in the tutorial session

 Written exam (details to be announced later)

Assessment and Exam

16

Let’s make the course as interactive as possible

 During the lecture and tutorials, please speak-up, ask questions and discuss!

 Also engage in asynchronous discussions on Mattermost

 Send the TAs questions you want to be addressed during the tutorial sessions

The material we discuss is relevant in practice:

 We will provide examples

 You will achieve the maximum fun factor if you do the project work

 We will have a few guest speakers (also from industry)

 Details to be announced later in class.

Course Set-up

17

This is not a standard course – it is state of the art (bleeding edge) systems and research

 There is no real textbook for this course, but a good overview of the principles behind

building scalable systems are covered in:

 “Designing Data-Intensive Applications” by Martin Kleppmann

 “Azure Application Architecture Guide” by Microsoft

 “Architecting for the Cloud” by AWS

 More on hardware- and software-virtualization is covered in:

 “Hardware and Software Support for Virtualization” by Ed Bougnon, Jason Nieh, and Dan Tsafrir.

 The lecture slides are available online

 Most material that we are going to cover is taken out of research papers:

 The references to those papers (all good, easy and fun! to read) will be given as we go.

 Relevant conferences: ACM/USENIX SOSP/OSDI, ACM SOCC, USENIX ATC, NSDI, ACM EuroSys,

ACM SIGMOD, VLDB, ACM SIGCOMM, IEEE ICDE, ACM CoNEXT, etc.

Course material

18

https://docs.microsoft.com/en-us/azure/architecture/guide/
https://d1.awsstatic.com/whitepapers/AWS_Cloud_Best_Practices.pdf

Cloud-based application design

Challenges

19

Scalability

 Independent parallel processing of sub-requests or tasks

 E.g., adding more servers permits serving more concurrent requests

Fault Tolerance

 Must mask failures and recover from hardware and software failures

 Must replicate data and service for redundancy

High Availability

 Service must operate 24/7

Consistency

 Data stored / produced by multiple services must lead to consistent results

Performance

 Predictable low-latency processing with high throughput

Distributed Computing Challenges

20

Ideally, adding N more servers should support N more users!

But, linear scalability is hard to achieve:

 Overheads + synchronization

 Load-imbalances create hot-spots

(e.g., due to popular content, poor hash function)

 Amdahl’s law → a straggler slows everything down

Therefore, one needs to partition both data and compute.

Scalability matters

21
W

o
rk

lo
a
d
 (

e
.g

.,
 r

e
q
u

e
s
ts

/s
e

c
)

Resources (e.g., servers)

Sub-linear scalability

Linear scalability

How do data-intensive applications scale?

 Enable task-parallel or data-parallel processing

 Frontend does the aggregation of (select top-k documents)

 Back-ends provide partial responses

e.g., Map-Reduce

Scaling computation

22

Im
g

s
rc

:
h
tt
p
s
:/
/w

w
w

.t
a
le

n
d
.c

o
m

/d
e
/r

e
s
o
u
rc

e
s
/w

h
a
t-

is
-m

a
p
re

d
u
c
e

/

 Think of failure as the common case.

 Full redundancy is too expensive → use failure recovery.

 Impossible to build redundant systems at scale

 Rather reduce the cost of failure recovery

 Failure recovery: replication or re-computation

 Which one is better, depends on the respective costs

 Replication:

 Need to replicate data and service

 Introduces the consistency issues

Fault tolerance

23

 Re-computation

 Easy for stateless services

 Remember data lineage for compute jobs

 Downtime → bad customer experience, and loss in revenue.

 According to Gartner, a minute of IT downtime costs companies $5’600 on average.

Cloud service providers offer service level agreements (SLAs) to their clients.

A commitment/contract for the quality of the service (e.g., availability, performance, etc.)

Translating downtime for a typical SLA for availability:

 99.9% (“three nines”) availability means 8.77 hours downtime per year  close to $3 million.

 99.99% (“four nines”) availability means 52.6 minutes downtime per year  close to $300’000.

For a high available service one needs to design and:

 Eliminate single point of failure by adding redundancy in the system.

 Have a reliable crossover.

 Have an efficient way to monitor and detect failures when they occur.

e.g., Amazon S3 offers 11 9s of availability of objects across multiple availability zones (AZs).

High availability

24

 Many applications need state replicated across a wide area, for reliability, availability and low latency.

 CAP Theorem: It is impossible for a distributed

data store to simultaneously provide more than

two out of the three guarantees:

 Consistency

 Availability

 Partition tolerance

Consistency

25

Reads/writes

Src: CAP Theorem by Eric Brewer, formally defined by Gilbert and Lynch

 Two main choices:

 Strongly consistent operations (e.g., use Paxos, Raft, etc.)

 Often at the cost of additional latency for the common case

 Inconsistent operations

 Better performance / availability, but applications are harder to write and reason about the model

 Many applications aiming for high availability gravitated towards eventual consistency

 E.g., Gmail: marking a message as read is asynchronous, but sending a message needs to be a

consistent operation

 Order of posts in LinkedIn news feed? Access from multiple devices?

 Count of song popularity in Spotify?

 But, modern data analytics (data lakes, training ML on PBs of data) require strong consistency
https://www.allthingsdistributed.com/2021/04/s3-strong-consistency.html

Consistency models

26
“Eventual Consistency Today: Limitations, Extensions, and Beyond” by Bailis and Ghodsi in ACM Queue vol. 11, issue 3, 2013

Online services (e.g., Facebook, Google search, Bing):

 Expected response time < 100ms

Performance affects revenue:

 Values reported 10 years ago

 Amazon: every 100ms of latency

costs them 1% in sales

 Google found an extra 0.5 secs

drops traffic by 20%

 Akamai in 2017 found that a 100ms delay

in page load time results in 6% drop in sales

 Even more valid today in mobile web

browsing/app responsiveness

Performance matters

https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-

latency-cost-them-1-in-sales/

https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/

 At scale, looking at the average request latency is not enough.

 Tail latency = the last 0.X% of the request latency distribution graph.

 e.g., we can take the slowest 1% response times or the 99%ile response time.

 Tail latency is amplified by scale, due to fan-outs for

 Micro-services, data partitions

 Overall latency ≥ latency of the slowest component

 Servers with 1ms average, but 1sec 99%ile latency

 1 server: 1% of the requests take >= 1 sec

 100 servers: 63% of the requests take >= 1sec

The tail at scale

28
“The Tail at Scale” by Jeffrey Dean and Luiz Andre Barroso in Comm. Of the ACM, 2013

Tail Latency Might Matter More than you Think – Marc Brooker blog.

 Increased fan-out has a large impact on the latency distributions.

 At Google scale:

 10ms 99% percentile for any single request

 The 99% percentile for all requests is 140ms and the 95% percentile is 70ms

 Waiting for the slowest 5% of the requests accounts for half of the total 99% percentile latency.

The tail at scale

29“The Tail at Scale” by Jeffrey Dean and Luiz Andre Barroso in Comm. Of the ACM, 2013

Scalability

 Being able to elastically scale (out and in) to meet the load demand is crucial.

Fault Tolerance

 Accept the reality that faults are common and build for quick detection and recovery.

High Availability

 Target multiple 9s availability to minimize costs for downtime.

Consistency

 Embracing eventual consistency for high availability is often preferred for many use-cases.

Performance

 Optimizing for tail latency is important.

Distributed Computing Challenges (recap)

30

Cloud-based application design

Design principles

31

 The cloud changes how applications are designed

.

Traditional on-premises Modern Cloud

Monolithic Decomposed

Designed for predictable scalability Designed for elastic scale

Relational Database Mix of storage technologies

Synchronized processing Asynchronous processing

Design to avoid failures Design for failure recovery

Occasional large updates Frequent small updates

Manual management Automated self-management

Snowflake servers Immutable infrastructure

The cloud revolution for application design

https://docs.microsoft.com/en-us/azure/architecture/guide/

 Design for self-healing.

 In a distributed system, failures happen all the time. Design the application to be self-healing

.

 Make all things redundant.

 Build redundancy into your application to avoid having single points of failure.

 Minimize coordination.

 Minimize coordination between application services to achieve better scalability.

 Design to scale out.

 Design your application so that it can scale horizontally, adding or removing new instances on demand.

 Partition around limits.

 Use partitioning to work around database, network and compute limits.

Design principles for cloud applications I

33

 Use of stateless services.

 Scaling without having a state is trivial.

 Caching

 Latency is king. Caching helps to significantly reduce the job’s latency.

 Use the best data store for the job.

 Pick the storage technology that is the best fit for your data and how it will be used.

 Distribute computation

 Partition/Aggregate compute pattern is one that scales pretty well.

 Design for evolution

 An evolutionary design is key for continuous innovation.

Design principles for cloud applications II

34

Designing Efficient Systems

35

Action Latency [ns]

L1 cache reference 0.5

Branch mis-prediction 5

L2 cache reference 7

Mutex lock/unlock 100

Main memory reference 100

Compress 1k bytes with Zippy 10’000

Send 2k bytes over 1Gbps network 20’000

Read 1MB sequentially from memory 250’000

Round trip within the same datacenter 500’000

Disk seek 10’000’000

Read 1MB sequentially from network 10’000’000

Read 1MB sequentially from disk 30’000’000

Send packet CA -> Netherlands -> CA 150’000’000

 Important skill: ability to estimate the

performance of a system without actually

building it!

 Do back-of-the-envelope calculations

 e.g., How long to generate image results page

(with 30 256K-image thumbnails)?

 Design 1: read 30 images serially:

 30*10ms/seek + 30*256K / 30MB/s = 560ms

 Design 2: issue 30 reads in parallel:

 10ms/seek + 256K / 30 MB/s = 18ms

 Lots of variations (caching, pre-computation, etc.)

https://static.googleusercontent.com/media/research.google.com/en//people/jeff/Stanford-DL-Nov-2010.pdf

https://static.googleusercontent.com/media/research.google.com/en/people/jeff/Stanford-DL-Nov-2010.pdf

e.g., Google uses several layers of abstraction

 Runs applications (e.g., search, mail, etc.) on top of the highest level

 Each layer is scalable, network-aware and fault-tolerant

 Know the basic building blocks (e.g., language libraries, data structures, indexing systems, datastores).

 Not just their interfaces, but understand their implementation (at least at a high level)

 If you do not know what’s going on, you cannot do decent back-of-the-envelope calculations!

Abstractions for Scalable Systems

36

Networking stack (TCP, UDP, QUIC)

Google File System (GFS)

BigTable storage system

MapReduce computation

Apps Apps Apps

Chubby

lock

service

 The whole spectrum is a lot more diverse, but just as a high-level overview

 Plus, many internal services for auto-scaling, monitoring, caching, security, etc.

Modern Scalable Distributed Systems Stacks

37

Networking stack (TCP, UDP, QUIC)

Files, dirs put, get lock, unlock

Distributed

file system

(GFS, HDFS,

NFS)

Distributed

KV store

(S3,Dynamo,

Cassandra)

Distributed

locking service

(Chubby,

ZooKeeper)

Distributed

computing

(Spark,

MapReduce)

Message

Queues

(Amazon

SQS)

tasks enq., deq.

Applications (e.g., Gmail, Facebook, mobile apps, etc.)

 Design a scalable service: e.g., Dropbox, Instagram, Twitter, YouTube/Netflix, etc.

 Typical steps:

1. Find the requirements and goals of the system (e.g., functional, non-functional)

2. Figure out the workloads the system should be optimized for (e.g., is it a read-heavy workload, etc.)

3. Do a back-of-the-envelope calculations for estimated storage capacity needs

4. High-level system design

5. Do the database schema based on the functional requirements

6. Do the large-scale system design based on the non-functional requirements

 How do you scale the system?

 How can you make it reliable and redundant?

 How would you do data sharding?

 Cache and load balancing?

7. How can you implement the functional compute requirements in the scaled system

Google/FB/Amazon System Design Interview

38https://www.educative.io/courses/grokking-the-system-design-interview

https://www.educative.io/courses/grokking-the-system-design-interview

Cloud-based application design

Data Infrastructure

39

Data infrastructure for the cloud

40

 Need to account for the full lifecycle of data

 Meet the requirements of each stage: ingestion, storage, processing, and visualization.

 Coordinate the efficient flow of data between stages

 Efficient execution of computations using the data.

Sources
Ingestion

and

Transformation

Storage

Query and

Processing

(Historical and

Predictive)

Output

 Excluding transactional systems (OLTP), log processing, and SaaS analytics applications.

Unified Architecture for Data Infrastructure

41

h
tt
p
s
:/
/f

u
tu

re
.c

o
m

/e
m

e
rg

in
g

-a
rc

h
it
e
c
tu

re
s
-m

o
d
e
rn

-d
a
ta

-

in
fr

a
s
tr

u
c
tu

re
/

https://future.com/emerging-architectures-modern-data-infrastructure/

In addition to cross-references provided in the slides

Some material based on:

 Lecture notes by Prof. Peter Pietzuch (Imperial)

 “Software Engineering Advice for Building Large-Scale Distributed Systems” by Jeff Dean (Google)

 “Building Large-Scale Internet Services” by Jeff Dean (Google) (link)

 “Azure Application Architecture Guide” by Microsoft (link)

 “Architecting for the Cloud” by AWS (link)

References

42

https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/44877.pdf
https://docs.microsoft.com/en-us/azure/architecture/guide/
https://d1.awsstatic.com/whitepapers/AWS_Cloud_Best_Practices.pdf

