
1 / 38

Basic Building Blocks

The Basic Problem

Someone hands you a large data set. How do you start analyzing it?

In particular:
• how do you get a first impression of the data?
• how do you pick the most appropriate tool for the task?
• how do you you decide about the required hardware?

2 / 38

Basic Building Blocks File Formats

File Formats

Data sets can be exchanged using a huge number of formats.
Some popular choices:

• text files / CSV files
• XML
• JSON
• binary but open formats like RCFile/OrcFile/Parquet
• proprietary binary formats (not well suited for exchange)

When in doubt, file can be a useful tool

3 / 38

Basic Building Blocks File Formats

CSV Files

A plain text file contains rows of data (Comma Separated values):

Sherlock Holmes,221B Baker Street,Detective
James Moriarty,Reichenbach Falls,Villain

• simple, human readable formats
• very popular, widely used
• but a lot of subtleties
• separator customizable
• strings with separator require quoting
• "String with "" inside"

4 / 38

Basic Building Blocks File Formats

XML Files
A text format encoding (semi-)structured data:

<characters>
<person name="Sherlock Holmes" address="221B Baker Street"
job="Detective"/>
<person name="James Moriarty" address="Reichenbach Falls"
job="Villain"/>
</characters>

• format itself better standardized than CSV
• suitable for nested data, too
• human readable, but not very friendly to write
• very verbose, also full XML spec is very complex
• allows for advanced features (XML Schema etc.), but these are rarely

used
• somewhat popular, but declining

5 / 38

Basic Building Blocks File Formats

JSON Files

A text format stemming from JavaScript Object Notation:

[{"name":"Sherlock Holmes", "address":"221B Baker Street",
"job":"Detective"},
{"name":"James Moriarty", "address":"Reichenbach Falls",
"job":"Villain"}]

• use cases similar to XML
• but a much simpler format
• less verbose and easier to write
• growing popularity

6 / 38

Basic Building Blocks Command Line Tools

Working With Text Files

Text files are quite popular because they are human readable and easy to
use.

We start with command line tools
• available by default on Unix/Linux platforms
• simple, but surprisingly powerful in combination
• ideal to get a first impression
• allows to examine and explore the data
• ultimately we want to pick a better tool
• but command line tools allow for simple analysis without any code

7 / 38

Basic Building Blocks Command Line Tools

Is It Worth the Time?

http://xkcd.com/1205/ CC BY-NC 2.5

http://xkcd.com/1205/

8 / 38

Basic Building Blocks Command Line Tools

Combining Tools

Many tools can read and write file, but it is often more convenient to
combine them with pipes

• every program has an input stream and an output stream
• concatenating both:

command1 | command2
• redirecting to a file

command > file
• redirecting from a file

command < file
• can form long pipelines of commands
• in addition: error stream

command 2> /dev/null

9 / 38

Basic Building Blocks Command Line Tools

Reading Files - cat

• reading a single file
cat file

• concatenating multiple file
cat file1 file2 file3

• accepting piped input
command | cat

• escaping binary data
cat -v binaryfile

• for compressed files
zcat / bzcat / xzcat

• mainly used as input for other commands

10 / 38

Basic Building Blocks Command Line Tools

Paging Results - less

• used to inspect results or files
• in pipelines mainly used as last command
• paging a command result

command | less
• paging a file

less file
• chopping long lines

less -S

11 / 38

Basic Building Blocks Command Line Tools

Filtering - grep
Returns all qualifying lines

• filtering input
cat file1 file2 | grep ’img[0-9]*\.jpg’

• regular expression syntax.
Note: might need escapes in shell

• filtering files
grep ’img[0-9]*\.jpg’ *.html

• returning only the match
command | grep -o ’user=.*$’

• returning only non-matching lines
grep -v ’ˆwarning’ logfile

• case insensitive search
cat file | grep -i ’\.jpg’

A very powerful tool with many options

12 / 38

Basic Building Blocks Command Line Tools

Examples

Find all senders on the LKML

Find all senders that are not using .com domains

Extract the email part of the sender address

13 / 38

Basic Building Blocks Command Line Tools

Sorting - sort
Sorts the input according to a criterion

• basic sorting
cat file | sort

• sorting numerically
cat file | sort -n

• sorting a specific key
cat file | sort -k 2

• sorting with explicit separator
cat file | sort -t ’,’ -k 3

• sorting, eliminating duplicates
cat file | sort -u

• very powerful and useful
• handles files larger than main memory
• sorted files used as inputs for other algorithms

14 / 38

Basic Building Blocks Command Line Tools

Selecting Prefix/Suffix - head/tail

Returns the begin/end of a file
• first 20 entries

sort file | head -20
• last 15 entries

sort file | tail -15
• everything but the first two entries

sort file | tail -n +3
• everything but the last two entries

sort file | head -n -2
• useful for the final result
• but also useful for min/max computations

15 / 38

Basic Building Blocks Command Line Tools

Handling Duplicates - uniq

Handles duplicates in sorted input
• eliminating duplicates

sort file | uniq
• counting duplicates

sort file | uniq -c
• returning duplicates

sort file | uniq -d
• returning unique lines

sort file | uniq -u
• very useful for grouping and counting

16 / 38

Basic Building Blocks Command Line Tools

Examples

Find all posters to the LKML, sorted alphabetically.

Find the 10 most prolific posters to the LKML.

Find all posters who wrote only a single mail.

17 / 38

Basic Building Blocks Command Line Tools

Projecting Columns - cut

Allows to return only relevant parts of the input
• return specific fields

cat file | cut -f 1,3
• cut with specific delimiter

cat file | cut -f 2-4 -d ’,’
• using characters instead of fields

cat file | cut -c 1-10

18 / 38

Basic Building Blocks Command Line Tools

Counting - wc

Counts the number of lines/words/characters
• full statistics

cat file | wc
• count the number of lines

cat file | wc -l
• count the number of bytes

cat file | wc -c
• useful to gather statistics about the data

19 / 38

Basic Building Blocks Command Line Tools

Shuffling - shuf

Shuffles the lines of the input
• random order

cat file | shuf
• not so commonly used, but very useful in some cases
• obtaining a random sample

cat file | shuf | head -10000
• result much more useful than without shuf
• also for performance tests

20 / 38

Basic Building Blocks Command Line Tools

Examples

Count the number of mail in the archive

Pick 20 mail subjects at random

Compute the most popular content type

21 / 38

Basic Building Blocks Command Line Tools

Editing Text - sed

• replacing one text with another
cat file | sed ’s/oldText/newText/’

• replacing all occurrences of a text
cat file | sed ’s/oldText/newText/g’

• using back-references
cat file | sed ’s/IMG \([0-9]*\).JPG/image\1.jpg/g’

• case insensitive matching
cat file | sed ’s/file[0-9]*.png/"&"/I’

• using multiple patterns
cat file | sed -e ’s/old1/new1/’ -e ’s:a/b:a b:’

• extremely powerful and useful
• many more features (grouping, conditional branching, etc.), but these

are rarely used

22 / 38

Basic Building Blocks Command Line Tools

Combining Files - join

Combines sorted input files
• combining two files on a common field

join -1 2 -2 1 file1 file2
• combining with explicit delimiter

join -1 2 -2 1 -d ’,’ file1 file2
• preserving unmatched lines

join -1 2 -2 1 -a 1 file1 file2
• behaves like a relational join
• but if you need that it might be better to use more powerful tools

23 / 38

Basic Building Blocks Command Line Tools

Computations - awk
Executes a program for every line of input

• general structure
awk ’BEGIN { init-code } { per-line-code } END {
done-code }’ file

• counting the number of lines
awk ’BEGIN { x=0 } { x=x+1 } END { print x }’

• summing up a column
awk ’BEGIN { x=0 } { x=x+$2 } END { print x }’

• averaging a column
awk ’BEGIN { x=0; y=0 } { x=x+$2; y=y+1 } END { print
x/y }’

• conditions
awk ’BEGIN { x=0 } { if ($1> 10) x=x+$2 } END { print x
}’

• and many other features

24 / 38

Basic Building Blocks Command Line Tools

Examples

Find the most popular words in the LKML data set

Compute the average number of lines in a mail

Find all mail authors who never get a response

25 / 38

Basic Building Blocks Understanding the Performance Spectrum

Understanding the Performance Spectrum

So far we have looked at high-level text tools for analysis.
Now we want to understand the performance spectrum

• what kind of performance can we expect from a single box?
• how large is the spread from high-level tools to hand-written code?
• what are the theoretical limits?
• what is the impact of careful programming?
• how large would a cluster have to be to improve performance?
• ultimately, we want to know which tools and hardware we need for a

specific problem

To understand that, we take a simple problem and look at it in details,
optimizing as much as needed.

26 / 38

Basic Building Blocks Understanding the Performance Spectrum

The Toy Problem

As demonstrator, we take the TPC-H dataset, relation lineitem and sum
up quantity (5th column):
1|155190|7706|1|17|21168.23|0.04|0.02|N|O|1996-03-13|...
1|67310|7311|2|36|45983.16|0.09|0.06|N|O|1996-04-12|...
1|63700|3701|3|8|13309.60|0.10|0.02|N|O|1996-01-29|...
1|2132|4633|4|28|28955.64|0.09|0.06|N|O|1996-04-21|...
...

• 725MB * SF (total data set roughly 1GB * SF)
• 6 million * SF lines
• we use text input for now
• real benchmark is much more complex, of course
• but that simple query can be analyzed easily and is surprisingly

expensive

27 / 38

Basic Building Blocks Understanding the Performance Spectrum

Performance Limits

What are the the limits for that query (SF1, 725MB)?

bandwidth query time
1GB ethernet 125MB/s 6s
rotating disk 200MB/s 3.6s
SATA SSD 500MB/s 1.6s
PCIe SSD 2GB/s 0.36s
DRAM 20GB/s 0.04s

• completely ignores CPU costs
• CPU costs not so relevant for disks, but very relevant for DRAM
• we will not be able to get that performance
• but we should try to get close

28 / 38

Basic Building Blocks Understanding the Performance Spectrum

Computing the Sum - awk

Using awk the task is trivial to formulate

awk -F ’|’ ’BEGIN {x=0} {x=x+$5} END {print x}’ lineitem

• first execution: 4.5s
• second execution: 3.6s
• first execution was waiting for disk
• second execution was CPU bound (much slower than DRAM speed)
• main memory/caching has a huge effect

28 / 38

Basic Building Blocks Understanding the Performance Spectrum

Computing the Sum - awk

Using awk the task is trivial to formulate

awk -F ’|’ ’BEGIN {x=0} {x=x+$5} END {print x}’ lineitem

• first execution: 4.5s
• second execution: 3.6s
• first execution was waiting for disk
• second execution was CPU bound (much slower than DRAM speed)
• main memory/caching has a huge effect

29 / 38

Basic Building Blocks Understanding the Performance Spectrum

Computing the Sum - Python

We can write a small Python program to compute the sum

sum=0
with open(sys.argv[1]) as f:
for line in f:
sum=sum+float(line.split(’|’)[4])

print (sum)

• first execution: 6.2s
• second execution: 6.2s
• Python is always CPU bound!
• Cannot keep up even with a rotating disk

29 / 38

Basic Building Blocks Understanding the Performance Spectrum

Computing the Sum - Python

We can write a small Python program to compute the sum

sum=0
with open(sys.argv[1]) as f:
for line in f:
sum=sum+float(line.split(’|’)[4])

print (sum)

• first execution: 6.2s
• second execution: 6.2s
• Python is always CPU bound!
• Cannot keep up even with a rotating disk

30 / 38

Basic Building Blocks Understanding the Performance Spectrum

Computing the Sum - C++
We can do the same in C++

unsigned sum=0;
while (getline(in,s)) {
unsigned v=0;
for (auto iter=s.begin(),limit=s.end();iter!=limit;++iter)
{ ... } /* extract 5th column into v */

sum+=v;
} cerr << sum << endl;

• first execution: 3.5s
• second execution: 0.8s
• first execution is I/O bound, second is CPU bound
• much faster than the others, but still far from DRAM speed
• code is more complex but also more efficient

30 / 38

Basic Building Blocks Understanding the Performance Spectrum

Computing the Sum - C++
We can do the same in C++

unsigned sum=0;
while (getline(in,s)) {
unsigned v=0;
for (auto iter=s.begin(),limit=s.end();iter!=limit;++iter)
{ ... } /* extract 5th column into v */

sum+=v;
} cerr << sum << endl;

• first execution: 3.5s
• second execution: 0.8s
• first execution is I/O bound, second is CPU bound
• much faster than the others, but still far from DRAM speed
• code is more complex but also more efficient

31 / 38

Basic Building Blocks Understanding the Performance Spectrum

Where Does the Time Go?

Figuring out where a program spends time requires profiling:

perf record sum lineitem && perf report

Counter summaries are interesting, too:

perf stat -d sum lineitem

32 / 38

Basic Building Blocks Understanding the Performance Spectrum

Computing the Sum - C++ with mmap
We can avoid copying the data by mapping the file into memory

int handle=open(argv[1],O RDONLY);
lseek(handle,0,SEEK END);
auto size=lseek(handle,0,SEEK CUR);
auto
data=mmap(nullptr,size,PROT READONLY,MAP SHARED,handle,0);
... /* operates directly on data, without manual reads */

• first execution: 3.7s
• second execution: 0.65s
• cold cache slightly slower, but warm cache faster
• we can directly read the file system cache, without copies
• profile has changed

32 / 38

Basic Building Blocks Understanding the Performance Spectrum

Computing the Sum - C++ with mmap
We can avoid copying the data by mapping the file into memory

int handle=open(argv[1],O RDONLY);
lseek(handle,0,SEEK END);
auto size=lseek(handle,0,SEEK CUR);
auto
data=mmap(nullptr,size,PROT READONLY,MAP SHARED,handle,0);
... /* operates directly on data, without manual reads */

• first execution: 3.7s
• second execution: 0.65s
• cold cache slightly slower, but warm cache faster
• we can directly read the file system cache, without copies
• profile has changed

33 / 38

Basic Building Blocks Understanding the Performance Spectrum

Computing the Sum - blockwise terminator search

We can speed up searching for \n by using block operations

uint64 t block=*reinterpret cast<const uint64 t*>(iter);
constexpr uint64 t high=0x8080808080808080ull;
constexpr uint64 t low=0x7F7F7F7F7F7F7F7Full;
constexpr uint64 t pattern=0x0A0A0A0A0A0A0A0Aull;
uint64 t lowChars=(˜block)&high;
uint64 t found0A=˜((((block&low)ˆpattern)+low)&high);
uint64 t matches=matches0A&lowChars;

• first execution: 3.7s
• second execution: 0.45s
• no effect on cold cache time, but warm cache significantly faster
• using SSE instructions even faster (0.41s), but not portable

33 / 38

Basic Building Blocks Understanding the Performance Spectrum

Computing the Sum - blockwise terminator search

We can speed up searching for \n by using block operations

uint64 t block=*reinterpret cast<const uint64 t*>(iter);
constexpr uint64 t high=0x8080808080808080ull;
constexpr uint64 t low=0x7F7F7F7F7F7F7F7Full;
constexpr uint64 t pattern=0x0A0A0A0A0A0A0A0Aull;
uint64 t lowChars=(˜block)&high;
uint64 t found0A=˜((((block&low)ˆpattern)+low)&high);
uint64 t matches=matches0A&lowChars;

• first execution: 3.7s
• second execution: 0.45s
• no effect on cold cache time, but warm cache significantly faster
• using SSE instructions even faster (0.41s), but not portable

34 / 38

Basic Building Blocks Understanding the Performance Spectrum

Computing the Sum - parallelism
We can use multiple cores for processing

unsigned chunks=thread::hardware concurrency();
vector<thread>threads;
for (unsigned index=1;index<chunks;++index)

threads.push back(thread(sumChunk(index));
sumChunk(0);

• first execution: 4.3s
• second execution: 0.13s
• warm cache case parallelizes nicely, but cold cache get slower!
• due to random access on a rotating disk
• we could squeeze out some more performance, but that is roughly the

limit when using only simple tricks

34 / 38

Basic Building Blocks Understanding the Performance Spectrum

Computing the Sum - parallelism
We can use multiple cores for processing

unsigned chunks=thread::hardware concurrency();
vector<thread>threads;
for (unsigned index=1;index<chunks;++index)

threads.push back(thread(sumChunk(index));
sumChunk(0);

• first execution: 4.3s
• second execution: 0.13s
• warm cache case parallelizes nicely, but cold cache get slower!
• due to random access on a rotating disk
• we could squeeze out some more performance, but that is roughly the

limit when using only simple tricks

35 / 38

Basic Building Blocks Understanding the Performance Spectrum

Comparing the Performance

Warm cache times:
time bandwidth

awk 3.6s 201 MB/s
Python 6.2s 116 MB/s
C++ 0.8s 906 MB/s
+ mmap 0.65s 1,115 MB/s
+ block 0.45s 1,611 MB/s
+ parallel 0.13s 5,576 MB/s

• implementation matters a lot
• even a desktop box can do multiple GB/s
• here we saturate everything but DRAM

36 / 38

Basic Building Blocks Understanding the Performance Spectrum

Should we use a Cluster?

Depends on the situation
• if we have to ship data

I network bandwidth 100MB/s (1GB/s for 10GB ethernet)
I program bandwith 5GB/s
I no, using a cluster slows down the computation

• if we can ship computation
I performance determined by latency and number of nodes
I roughly 20ms + |W |

5GB/s∗n
I for 10 nodes pays off if |W | ≥ 113MB
I so yes if the problem is large enough to warrant the latency

37 / 38

Basic Building Blocks Understanding the Performance Spectrum

Should we use a Different Representation?

Not always an option, of course
• but a columnar binary format would reduce touched data by factor 30
• plus we avoid the expensive parse logic
• often improves runtime by factor 50 or more
• will require a conversion step here
• but pays off for repeated queries

38 / 38

Basic Building Blocks Understanding the Performance Spectrum

What We Have Seen

• quality of implementation matters a lot
• a single box can handle many gigabytes efficiently
• network speed is a problem / using remote CPUs is difficult
• we often prefer scale up over scale out
• not always possible/economical, of course
• scale out has significant overhead, pays off only in the long run

	Basic Building Blocks
	File Formats
	Command Line Tools
	Understanding the Performance Spectrum

