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Basic Building Blocks

The Basic Problem

Someone hands you a large data set. How do you start analyzing it?

In particular:
• how do you get a first impression of the data?
• how do you pick the most appropriate tool for the task?
• how do you you decide about the required hardware?
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Basic Building Blocks File Formats

File Formats

Data sets can be exchanged using a huge number of formats.
Some popular choices:

• text files / CSV files
• XML
• JSON
• binary but open formats like RCFile/OrcFile/Parquet
• proprietary binary formats (not well suited for exchange)

When in doubt, file can be a useful tool
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CSV Files

A plain text file contains rows of data (Comma Separated values):

Sherlock Holmes,221B Baker Street,Detective
James Moriarty,Reichenbach Falls,Villain

• simple, human readable formats
• very popular, widely used
• but a lot of subtleties
• separator customizable
• strings with separator require quoting
• "String with "" inside"
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XML Files
A text format encoding (semi-)structured data:

<characters>
<person name="Sherlock Holmes" address="221B Baker Street"
job="Detective"/>
<person name="James Moriarty" address="Reichenbach Falls"
job="Villain"/>
</characters>

• format itself better standardized than CSV
• suitable for nested data, too
• human readable, but not very friendly to write
• very verbose, also full XML spec is very complex
• allows for advanced features (XML Schema etc.), but these are rarely

used
• somewhat popular, but declining



5 / 38

Basic Building Blocks File Formats

JSON Files

A text format stemming from JavaScript Object Notation:

[{"name":"Sherlock Holmes", "address":"221B Baker Street",
"job":"Detective"},
{"name":"James Moriarty", "address":"Reichenbach Falls",
"job":"Villain"}]

• use cases similar to XML
• but a much simpler format
• less verbose and easier to write
• growing popularity
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Basic Building Blocks Command Line Tools

Working With Text Files

Text files are quite popular because they are human readable and easy to
use.

We start with command line tools
• available by default on Unix/Linux platforms
• simple, but surprisingly powerful in combination
• ideal to get a first impression
• allows to examine and explore the data
• ultimately we want to pick a better tool
• but command line tools allow for simple analysis without any code
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Basic Building Blocks Command Line Tools

Is It Worth the Time?

http://xkcd.com/1205/ CC BY-NC 2.5

http://xkcd.com/1205/
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Basic Building Blocks Command Line Tools

Combining Tools

Many tools can read and write file, but it is often more convenient to
combine them with pipes

• every program has an input stream and an output stream
• concatenating both:

command1 | command2
• redirecting to a file

command > file
• redirecting from a file

command < file
• can form long pipelines of commands
• in addition: error stream

command 2> /dev/null
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Reading Files - cat

• reading a single file
cat file

• concatenating multiple file
cat file1 file2 file3

• accepting piped input
command | cat

• escaping binary data
cat -v binaryfile

• for compressed files
zcat / bzcat / xzcat

• mainly used as input for other commands
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Paging Results - less

• used to inspect results or files
• in pipelines mainly used as last command
• paging a command result

command | less
• paging a file

less file
• chopping long lines

less -S
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Filtering - grep
Returns all qualifying lines

• filtering input
cat file1 file2 | grep ’img[0-9]*\.jpg’

• regular expression syntax.
Note: might need escapes in shell

• filtering files
grep ’img[0-9]*\.jpg’ *.html

• returning only the match
command | grep -o ’user=.*$’

• returning only non-matching lines
grep -v ’ˆwarning’ logfile

• case insensitive search
cat file | grep -i ’\.jpg’

A very powerful tool with many options
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Examples

Find all senders on the LKML

Find all senders that are not using .com domains

Extract the email part of the sender address
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Sorting - sort
Sorts the input according to a criterion

• basic sorting
cat file | sort

• sorting numerically
cat file | sort -n

• sorting a specific key
cat file | sort -k 2

• sorting with explicit separator
cat file | sort -t ’,’ -k 3

• sorting, eliminating duplicates
cat file | sort -u

• very powerful and useful
• handles files larger than main memory
• sorted files used as inputs for other algorithms
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Selecting Prefix/Suffix - head/tail

Returns the begin/end of a file
• first 20 entries

sort file | head -20
• last 15 entries

sort file | tail -15
• everything but the first two entries

sort file | tail -n +3
• everything but the last two entries

sort file | head -n -2
• useful for the final result
• but also useful for min/max computations
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Basic Building Blocks Command Line Tools

Handling Duplicates - uniq

Handles duplicates in sorted input
• eliminating duplicates

sort file | uniq
• counting duplicates

sort file | uniq -c
• returning duplicates

sort file | uniq -d
• returning unique lines

sort file | uniq -u
• very useful for grouping and counting
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Basic Building Blocks Command Line Tools

Examples

Find all posters to the LKML, sorted alphabetically.

Find the 10 most prolific posters to the LKML.

Find all posters who wrote only a single mail.
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Projecting Columns - cut

Allows to return only relevant parts of the input
• return specific fields

cat file | cut -f 1,3
• cut with specific delimiter

cat file | cut -f 2-4 -d ’,’
• using characters instead of fields

cat file | cut -c 1-10
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Basic Building Blocks Command Line Tools

Counting - wc

Counts the number of lines/words/characters
• full statistics

cat file | wc
• count the number of lines

cat file | wc -l
• count the number of bytes

cat file | wc -c
• useful to gather statistics about the data
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Shuffling - shuf

Shuffles the lines of the input
• random order

cat file | shuf
• not so commonly used, but very useful in some cases
• obtaining a random sample

cat file | shuf | head -10000
• result much more useful than without shuf
• also for performance tests
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Basic Building Blocks Command Line Tools

Examples

Count the number of mail in the archive

Pick 20 mail subjects at random

Compute the most popular content type
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Editing Text - sed

• replacing one text with another
cat file | sed ’s/oldText/newText/’

• replacing all occurrences of a text
cat file | sed ’s/oldText/newText/g’

• using back-references
cat file | sed ’s/IMG \([0-9]*\).JPG/image\1.jpg/g’

• case insensitive matching
cat file | sed ’s/file[0-9]*.png/"&"/I’

• using multiple patterns
cat file | sed -e ’s/old1/new1/’ -e ’s:a/b:a b:’

• extremely powerful and useful
• many more features (grouping, conditional branching, etc.), but these

are rarely used
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Basic Building Blocks Command Line Tools

Combining Files - join

Combines sorted input files
• combining two files on a common field

join -1 2 -2 1 file1 file2
• combining with explicit delimiter

join -1 2 -2 1 -d ’,’ file1 file2
• preserving unmatched lines

join -1 2 -2 1 -a 1 file1 file2
• behaves like a relational join
• but if you need that it might be better to use more powerful tools
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Computations - awk
Executes a program for every line of input

• general structure
awk ’BEGIN { init-code } { per-line-code } END {
done-code }’ file

• counting the number of lines
awk ’BEGIN { x=0 } { x=x+1 } END { print x }’

• summing up a column
awk ’BEGIN { x=0 } { x=x+$2 } END { print x }’

• averaging a column
awk ’BEGIN { x=0; y=0 } { x=x+$2; y=y+1 } END { print
x/y }’

• conditions
awk ’BEGIN { x=0 } { if ($1> 10) x=x+$2 } END { print x
}’

• and many other features
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Basic Building Blocks Command Line Tools

Examples

Find the most popular words in the LKML data set

Compute the average number of lines in a mail

Find all mail authors who never get a response
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Basic Building Blocks Understanding the Performance Spectrum

Understanding the Performance Spectrum

So far we have looked at high-level text tools for analysis.
Now we want to understand the performance spectrum

• what kind of performance can we expect from a single box?
• how large is the spread from high-level tools to hand-written code?
• what are the theoretical limits?
• what is the impact of careful programming?
• how large would a cluster have to be to improve performance?
• ultimately, we want to know which tools and hardware we need for a

specific problem

To understand that, we take a simple problem and look at it in details,
optimizing as much as needed.
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Basic Building Blocks Understanding the Performance Spectrum

The Toy Problem

As demonstrator, we take the TPC-H dataset, relation lineitem and sum
up quantity (5th column):
1|155190|7706|1|17|21168.23|0.04|0.02|N|O|1996-03-13|...
1|67310|7311|2|36|45983.16|0.09|0.06|N|O|1996-04-12|...
1|63700|3701|3|8|13309.60|0.10|0.02|N|O|1996-01-29|...
1|2132|4633|4|28|28955.64|0.09|0.06|N|O|1996-04-21|...
...

• 725MB * SF (total data set roughly 1GB * SF)
• 6 million * SF lines
• we use text input for now
• real benchmark is much more complex, of course
• but that simple query can be analyzed easily and is surprisingly

expensive
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Basic Building Blocks Understanding the Performance Spectrum

Performance Limits

What are the the limits for that query (SF1, 725MB)?

bandwidth query time
1GB ethernet 125MB/s 6s
rotating disk 200MB/s 3.6s
SATA SSD 500MB/s 1.6s
PCIe SSD 2GB/s 0.36s
DRAM 20GB/s 0.04s

• completely ignores CPU costs
• CPU costs not so relevant for disks, but very relevant for DRAM
• we will not be able to get that performance
• but we should try to get close
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Basic Building Blocks Understanding the Performance Spectrum

Computing the Sum - awk

Using awk the task is trivial to formulate

awk -F ’|’ ’BEGIN {x=0} {x=x+$5} END {print x}’ lineitem

• first execution: 4.5s
• second execution: 3.6s
• first execution was waiting for disk
• second execution was CPU bound (much slower than DRAM speed)
• main memory/caching has a huge effect
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Basic Building Blocks Understanding the Performance Spectrum

Computing the Sum - Python

We can write a small Python program to compute the sum

sum=0
with open(sys.argv[1]) as f:
for line in f:
sum=sum+float(line.split(’|’)[4])

print (sum)

• first execution: 6.2s
• second execution: 6.2s
• Python is always CPU bound!
• Cannot keep up even with a rotating disk
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Basic Building Blocks Understanding the Performance Spectrum

Computing the Sum - C++
We can do the same in C++

unsigned sum=0;
while (getline(in,s)) {
unsigned v=0;
for (auto iter=s.begin(),limit=s.end();iter!=limit;++iter)
{ ... } /* extract 5th column into v */

sum+=v;
} cerr << sum << endl;

• first execution: 3.5s
• second execution: 0.8s
• first execution is I/O bound, second is CPU bound
• much faster than the others, but still far from DRAM speed
• code is more complex but also more efficient
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Basic Building Blocks Understanding the Performance Spectrum

Where Does the Time Go?

Figuring out where a program spends time requires profiling:

perf record sum lineitem && perf report

Counter summaries are interesting, too:

perf stat -d sum lineitem
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Computing the Sum - C++ with mmap
We can avoid copying the data by mapping the file into memory

int handle=open(argv[1],O RDONLY);
lseek(handle,0,SEEK END);
auto size=lseek(handle,0,SEEK CUR);
auto
data=mmap(nullptr,size,PROT READONLY,MAP SHARED,handle,0);
... /* operates directly on data, without manual reads */

• first execution: 3.7s
• second execution: 0.65s
• cold cache slightly slower, but warm cache faster
• we can directly read the file system cache, without copies
• profile has changed
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Computing the Sum - blockwise terminator search

We can speed up searching for \n by using block operations

uint64 t block=*reinterpret cast<const uint64 t*>(iter);
constexpr uint64 t high=0x8080808080808080ull;
constexpr uint64 t low=0x7F7F7F7F7F7F7F7Full;
constexpr uint64 t pattern=0x0A0A0A0A0A0A0A0Aull;
uint64 t lowChars=(˜block)&high;
uint64 t found0A=˜((((block&low)ˆpattern)+low)&high);
uint64 t matches=matches0A&lowChars;

• first execution: 3.7s
• second execution: 0.45s
• no effect on cold cache time, but warm cache significantly faster
• using SSE instructions even faster (0.41s), but not portable



33 / 38

Basic Building Blocks Understanding the Performance Spectrum

Computing the Sum - blockwise terminator search

We can speed up searching for \n by using block operations

uint64 t block=*reinterpret cast<const uint64 t*>(iter);
constexpr uint64 t high=0x8080808080808080ull;
constexpr uint64 t low=0x7F7F7F7F7F7F7F7Full;
constexpr uint64 t pattern=0x0A0A0A0A0A0A0A0Aull;
uint64 t lowChars=(˜block)&high;
uint64 t found0A=˜((((block&low)ˆpattern)+low)&high);
uint64 t matches=matches0A&lowChars;

• first execution: 3.7s
• second execution: 0.45s
• no effect on cold cache time, but warm cache significantly faster
• using SSE instructions even faster (0.41s), but not portable



34 / 38

Basic Building Blocks Understanding the Performance Spectrum

Computing the Sum - parallelism
We can use multiple cores for processing

unsigned chunks=thread::hardware concurrency();
vector<thread>threads;
for (unsigned index=1;index<chunks;++index)

threads.push back(thread(sumChunk(index));
sumChunk(0);

• first execution: 4.3s
• second execution: 0.13s
• warm cache case parallelizes nicely, but cold cache get slower!
• due to random access on a rotating disk
• we could squeeze out some more performance, but that is roughly the

limit when using only simple tricks
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Comparing the Performance

Warm cache times:
time bandwidth

awk 3.6s 201 MB/s
Python 6.2s 116 MB/s
C++ 0.8s 906 MB/s
+ mmap 0.65s 1,115 MB/s
+ block 0.45s 1,611 MB/s
+ parallel 0.13s 5,576 MB/s

• implementation matters a lot
• even a desktop box can do multiple GB/s
• here we saturate everything but DRAM
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Should we use a Cluster?

Depends on the situation
• if we have to ship data

I network bandwidth 100MB/s (1GB/s for 10GB ethernet)
I program bandwith 5GB/s
I no, using a cluster slows down the computation

• if we can ship computation
I performance determined by latency and number of nodes
I roughly 20ms + |W |

5GB/s∗n
I for 10 nodes pays off if |W | ≥ 113MB
I so yes if the problem is large enough to warrant the latency
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Should we use a Different Representation?

Not always an option, of course
• but a columnar binary format would reduce touched data by factor 30
• plus we avoid the expensive parse logic
• often improves runtime by factor 50 or more
• will require a conversion step here
• but pays off for repeated queries
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What We Have Seen

• quality of implementation matters a lot
• a single box can handle many gigabytes efficiently
• network speed is a problem / using remote CPUs is difficult
• we often prefer scale up over scale out
• not always possible/economical, of course
• scale out has significant overhead, pays off only in the long run
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