No False Negatives: Accepting All Useful Schedules
in a Fast Serializable Many-Core System

Dominik Durner
Technical University of Munich
dominik.durner @tum.de

Abstract—Concurrency control is one of the most performance
critical steps in modern many-core database systems. Achieving
higher throughput on multi-socket servers is difficult and many
concurrency control algorithms reduce the amount of accepted
schedules in favor of transaction throughput or relax the isolation
level which introduces unwanted anomalies. Both approaches lead
to unexpected transaction behavior that is difficult to understand
by the database users.

We introduce a novel multi-version concurrency protocol that
achieves high performance while reducing the number of aborted
schedules to a minimum and providing the best isolation level. Our
approach leverages the idea of a graph-based scheduler that uses
the concept of conflict graphs. As conflict serializable histories
can be represented by acyclic conflict graphs, our scheduler
maintains the conflict graph and allows all transactions that
keep the graph acyclic. All conflict serializable schedules can be
accepted by such a graph-based algorithm due to the conflict
graph theorem. Hence, only transaction schedules that truly
violate the serializability constraints need to abort. Our developed
approach is able to accept the useful intersection of commit order
preserving conflict serializable (COCSR) and recoverable (RC)
schedules which are the two most desirable classes in terms of
correctness and user experience. We show experimentally that
our graph-based scheduler has very competitive throughput in
pure transactional workloads while providing fewer aborts and
improved user experience. Our multi-version extension helps to
efficiently perform long-running read transactions on the same
up-to-date database. Moreover, our graph-based scheduler can
outperform the competitors on mixed workloads.

I. INTRODUCTION

Concurrency control is one of the most important tasks of a
database management system (DBMS). It is used to achieve
the ACID (atomicity, consistency, isolation, and durability)
properties. Although multiple concurrent tasks can run simul-
taneously, transaction isolation creates the illusion of being the
only user of the database. This illusion is enforced with the
help of the concept of serializability. Conflict serializability
is the theoretical foundation that focuses on finding a serial
schedule with equal read-write, write-read, and write-write
tuple access pairs. The goal of concurrency control protocols
is to allow as many theoretically possible conflict serializable
schedules without reducing the query performance.

Although serializable transaction processing is a great
concept, it seems hard to implement efficiently. Previous
approaches need to trade maximum transaction throughput
for allowed concurrency (reducing the number of allowed
schedules). The classical way to ensure serializability is Two-
Phase Locking (2PL) which is easy to implement [1]. Many

Thomas Neumann
Technical University of Munich
thomas.neumann @tum.de

all schedules RC
CSR
OCSR
COCSR ‘

Fig. 1: Our approach accepts the useful intersection of COCSR
and RC schedules for correctness and superior user experience.

traditional commercial systems, such as DB2, use two-phase
schedulers [2]. Pessimistic protocols, such as 2PL, work well on
highly contented workloads but incur severe overhead in read-
mostly database systems. As a consequence the prominent class
of concurrency control algorithms that are based on timestamps
was developed. These schedulers work well in low contention
workloads but introduce unwanted and unnecessary aborts if
the workload is conflict heavy. Optimistic concurrency control
protocols, which are often used in modern database systems,
schedule many unnecessary aborts [3], [4], [5].

A particular challenge arises with long-running read transac-
tions which are common in online analytical processing (OLAP)
workloads. Many modern systems have either reduced online
transaction processing (OLTP) throughput or use isolation levels
that are more relaxed than serializable. These systems rely on
multi-version concurrency control (MVCC) that retains the
data in multiple versions which helps to process long-running
readers [6], [7]. To achieve higher throughput most systems
only guarantee the relaxed isolation level of Snapshot Isolation
(SI). SI provides a high level of isolation; however, there are
schedules that are not serializable but are allowed in SI and
this results in unwanted and hazardous anomalies [8], [9].

Moreover, traditional concurrency control algorithms do not
scale with new hardware trends. In particular, the development
of many-core server architectures, which have more than
hundred general-purpose cores, introduces many pitfalls. For
example, optimistic algorithms often rely on an exclusively
executed verification phase at commit time. Unfortunately,
the high contention on the commit phase leads to very poor
throughput performance. As a result, most DBMS perform
poorly on OLTP workloads and new algorithms are required
to help overcome such fundamental performance bottlenecks.

In this paper, we present a novel scheduler that achieves
high throughput on many-core systems while reducing aborted
schedules to a minimum. It is based on the concept of
maintaining a conflict graph to detect serializability issues [10].

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. https://doi.org/10.1109/ICDE.2019.00071

https://doi.org/10.1109/ICDE.2019.00071

The graph-based scheduler was never really considered for
practical applications as it seemed to be too expensive to
continuously maintain an acyclic graph. However, we show
that this assumption does not hold anymore because of modern
multi-core processors and our innovative graph structure. Our
key contributions are a novel graph structure that only needs
transaction local locks for commit critical operations and our
read-only multi-version concept for long-running read queries.
With our new graph structure and modern hardware it is
possible to scale the graph operations and achieve very high
throughput performance for both OLTP and OLAP workloads.
The conflict graph theorem asserts that the history is serializable
if and only if the conflict graph is acyclic. Our approach
is able to basically accept the most desirable intersection
of commit order preserving conflict serializable (COCSR)
and (log-) recoverable (RC') schedules which is shown in
Figure 1. Other concurrency control algorithms can only accept
a smaller class of these user wanted schedules. In practice,
these schedulers use heuristics, such as 2PL or timestamp
ordering, to approximate the class of serializable schedules.
This leads to user visible but hard to explain behavior artifacts.
We minimize aborted schedules, which require restarting,
to avoid unnecessary system load. Aborted transactions are
very unpleasant since user code or in the worst case the
human user needs to handle these transaction failures. Our
transaction system provides the highest isolation level of
conflict serializability and does not compromise isolation for
performance. Moreover, our findings can refute the assumption
that the usage of graph-based schedulers as concurrency control
algorithms is impractical [11].

The rest of this paper is structured as follows: Section II
formalizes the properties of the single-version graph-based
concurrency control algorithm and shows the steps necessary
for achieving high performance on many-core systems. After
discussing the theoretical properties of our approach, the long-
running read optimized version is described in Section III. The
algorithms are evaluated in Section IV according to multiple
benchmarks and workloads. Section V discusses the related
work before we draw conclusions in Section VI.

II. GRAPH-BASED CONCURRENCY CONTROL

The class of conflict serializable schedules (C'SR) can be
represented entirely with acyclic conflict graphs, as a schedule
is conflict serializable if and only if the corresponding conflict
graph is acyclic [6]. Therefore, we want to exploit this theoret-
ical property by introducing our novel scheduler that maintains
the conflict graph. Only transactions that break the conflict
serializability properties need to abort. One challenge with the
graph-based approach arises from the regular single-threaded
execution of graph operations. The single-threaded conflict
graph scheduler has the same unpleasant execution paths as
other concurrency control algorithms such as the validation
phase in optimistic protocols. In this work, we eliminate
the performance problems of the graph-based scheduler by
developing a many-core ready parallel graph structure without
globally synchronized paths. We first give a short overview of

the foundations of such a graph-based scheduler. Afterwards,
we show the novel many-core optimizations that help scale the
graph operations.

A. Conflict Graph Properties

Our scheduler is based on the idea of maintaining an acyclic
conflict graph of the current schedule s which is denoted as
CG(s). Every transaction is represented by a node in the
graph. Conflicting operations a; of ¢; and b; of ¢; of the form
a;[z] <s bj[z],t; # t;, with (a,b) € {(r,w), (w,7), (w,w)},
are represented as an edge of the form (¢;,¢;).

Theorem 1 (Conflict Graph Theorem).
s € CSR < CG(s) is acyclic

The main proof idea of the conflict graph theorem is the
existence of a serial ordering such that all conflict edges can be
satisfied. A serial schedule with the same conflict pairs as the
current executed schedule exists iff the graph is acyclic. The
theorem can be proven by ordering the transactions according
to their topological ordering in the graph.

The concept of using the conflict graph as scheduler is
known as Serialization Graph Testing (SGT) [10], [12]. Each
operation first inserts all conflicting edges into the graph and
only if the graph is still acyclic it is allowed to be executed.
To ensure the acyclic property of the directed acyclic graph,
cyclic dependencies result in aborts of transactions. If a cycle
between two nodes exists, either transaction would need to
be ordered before the other one in a conflict equivalent serial
schedule. This impossible requirement shows that the schedule
is not conflict serializable anymore. Due to the direct link
to the conflict graph theorem, the SGT approach guarantees
to accept all possible conflict serializable schedules. The
main reason why SGT hitherto seemed to be impractical
was the costs for cycle checking [11]. But modern multi-
core processors allow us to efficiently schedule cycle checks
nowadays. Especially, our novel many-core graph structure,
that is able to perform simultaneous accesses in parallel, is
a major benefit in comparison to the original SGT and many
other modern concurrency control algorithms.

The SGT approach relies on conflict pairs to ensure a
serializable execution. Therefore, the database system must
guarantee that the execution of conflicting operations is in
a fixed order. Each operation that affects a specific row is
assigned an ordering local to a data element. Operations can
only introduce conflicts on the same data element. Thus, the
local ordering is sufficient to derive all conflict pairs for the
scheduled operation. Further, all previous accesses to the tuple
are stored within the tuple access history such that the different
conflict pairs can be derived from the access history.

One central idea of SGT is that only transactions that are
involved in a cycle actually break the conflict serializability
constraints. The cyclic dependencies need to be resolved by
aborting the node introducing the cycle. Transactions, denoted
as t;, that had a w-r / w-w edge from the aborted node ¢, (edge
of the form (¢,,;)) need to abort as well because ¢; based a
decision on a dirty value that should not have existed after all.

After these aborts the rest of the schedule is serializable. Live-
locks can be detected and resolved as the aborting transaction
knows the edges to its parents.

B. Contribution Overview

In the following we discuss our high-performance graph-
based scheduler. First, the graph structure that allows concurrent
accesses of different transactions is explained in detail. Op-
timizations such as the decoupling of the access history and
deletions of transaction nodes are shown as well. After the
algorithmic analysis, a short example highlights our approach.
We argue about different approaches for the performance critical
cycle checks to achieve maximum throughput. Before we
conclude the section with the correctness analysis, all the
important implementation details are explained.

C. Design Principles

In this section, we show the key changes in the algorithm
that are necessary to fulfill the properties of an order preserving
and recoverable concurrency control protocol. Moreover, the
introduced changes help us to efficiently scale our graph-based
scheduler.

Example 1 (Commit Requirements of SGT nodes).
s1 = rolx] wolz] ralz] wex] r1[z] r1[y] wily] c1 - . - co 2

One pitfall of SGT is the timing of node deletions. The
simple approach of deleting committed nodes can introduce
serializability issues but a delayed deletion strategy can avoid
these problems while reducing the memory consumption
significantly. A committed node, denoted as node %., is not
allowed to be removed from the graph before all edges of the
form (¢;,t.) have been removed. Without this requirement,
a possible cycle after the commit remains undetected. In
Example 1, transaction ¢; is not allowed to be removed from
the graph after its commit ¢;. If ¢o additionally requests r3[y]
before the commit ¢y in sy, the schedule s; would not be
serializable anymore and a cycle between nodes ¢; <> to would
be inserted. Hence, both transactions schedule a write before
the other one’s read and no serial schedule can be found. If
node ¢y is removed, the serialization graph does not encounter
the cycle and the serialization issue would be undetected. Note
that the commit of ¢; is allowed, just the deletion must be
postponed in the original SGT definition.

Additionally, some schedules should not be allowed, in
comparison to the regular SGT definition, to ensure the
important recoverability property. The class of recoverable
schedules is not directly related to conflict serializability. As
a consequence, additional restrictions need to be enforced to
ensure ACID properties. Every transaction needs to wait before
committing until it does not depend on any other in-flight
transaction. Thus, a transaction must not have uncommitted
incoming write-read / write-write edges at commit time.
Example 1 also shows a non log-recoverable schedule. ¢; is
not allowed to commit before ¢5. Otherwise, t; would base
a decision on a read value that never existed if t5 aborts. In
the following, the even stronger property, that a transaction ¢,

cannot commit until all edges of the form (;,%.) are removed,
is ensured. Although read-write edges do not run into direct
log-recoverability issues, these edges are treated the same as
the other edges to generate only order preserving schedules.
Assume so = ri[z] walz] ca T3[y] c3 wily] c1. If the read-
write edges would not lead to commit delays, the schedule ss
would be accepted although it is not order preserving since
sh =tz t1 ta. Our changes introduced to achieve recoverable
and order preserving schedules also solve the deletion problem
because every committed node can be deleted directly.

D. Many-Core Performance Tuning

A key challenge of using the serialization graph as con-
currency control protocol is the scalability issues on multi-
core servers that can have hundreds of general purpose cores.
The simple approach of just locking the graph completely
while a thread inserts edges or performs a cycle check has
too many single-threaded synchronized paths. Therefore, this
simple strategy does not perform well on multi-core servers
although its theoretical properties are optimal.

We developed a local locking graph structure that allows for
concurrent insertions and safe cycle checks. Hence, we can
overcome the performance problems of a single-threaded graph-
based scheduler while achieving the good theoretical properties
of the graph-based scheduler. The proposed strategy uses locks
on transaction granularity to ensure that all edges, possibly
involving the transaction within a cycle, are inserted. This
requirement must be met for safe commits and aborts, otherwise
a concurrent edge insertion could introduce an undetected
cycle or prohibit nodes from committing. For example, a
transaction ¢, is in the process of committing and has already
deleted all outgoing edges. Another transaction t; might read
a value written by ¢. and therefore introduces the edge (., t1)
according to an inserted conflict. Thus, node t; introduces
an edge after the deletion routine is already finished and
consequently the transaction t; would always see the edge
(te,tr) although the node t. does not exist anymore.

To prevent the issues arising from concurrent insertions
and cycle checks, the transaction local locks have two modes;
a shared insert / concurrent cycle check mode, and a final
exclusive cycle check mode. During the shared lock, multiple
threads can access the transaction’s node for insertions and
cycle checks. The final cycle check to determine whether a
transaction is allowed to be committed is executed in exclusive
mode. No parallel inserts can be performed introducing the
above mentioned anomalies. So, either a conflict pair is inserted
before the commit / abort or the conflict pair does not exist
anymore since an inserting thread needs to wait until the
commit is finished and the node has been deleted.

A deleted node t; must still be accessible until no transaction
t; can possibly find a conflict and the corresponding edge
(ta,t;) according to any tuple access history (reads and writes
on a tuple). Each node needs to store the current state of
the transaction (committed, aborted, running) for concurrently
inserting transactions. If a node ¢; is committed and another
transaction t; wants to access one of the data elements touched

Algorithm 1: Edge Insertion
input :Node thisNode, Node fromNode, bool rwEdge
output : Boolean isStillSerializable
if {fromNode, rwEdge} ¢ thisNode.inSet then
lockSharedGuard(fromNode)
if fromNode.state == aborted && !rwEdge then
| return false
else if fromNode.state == committed then
| return true
thisNode.inSet.add({fromNode, rwEdge})
fromNode.outSet.add({thisNode, rwEdge})
cycle = cycleCheckFrom(thisNode)
return !cycle

else
‘ return true //Edge already exists
end

Algorithm 2: Commit

input :Node thisNode

output : Boolean successfullyCommitted

lockExclusiveGuard(thisNode)

if thisNode.inSet # {} then

| return false

foreach outNode € thisNode.outSet do
lockSharedGuard(outNode)
thisNode.outSet.remove({ outNode })
outNode.inSet.remove({thisNode})

end

thisNode.state = committed

epochGarbageCollector.scheduleDelete(thisNode)

return true

by ti, the transaction ¢; can perform its operation without
actually inserting the edge (tx,t;). If the transaction tj is
aborted, the other transaction ¢; needs to abort as well (w-r /
w-w edge) since the undo of the abort might not be finished yet
and the possible (¢x,t;) edge indicates an access to a modified
tuple. The existence of the removed node can be assured with
an epoch based garbage collector that is also used for the
concurrent data structures as well as for the multi-version
graph-based scheduler, discussed later.

The edges in our many-core optimized graph are represented
by sets of pointers to other transaction nodes. Each node
consists of two sets of pointers that represent incoming and
outgoing edges of this transaction. The edge sets need to
guarantee thread-safe concurrent accesses (scans, insertions,
and deletions) during the shared lock. If an edge is already
present in the graph, the graph does not change and we do not
need to perform any additional work. Otherwise, we acquire
the shared lock such that the other transaction cannot be in
its commit process. Due to the parallel execution, we check
whether the node is still alive and not in the process of being
collected from the garbage collector. If the other transaction is
not finished yet, we establish the new edge by inserting it into
the respective sets of incoming and outgoing node pointers.
A final cycle check determines whether the schedule is still
serializable. Algorithm 1 shows the edge insertion procedure.

For commit handling, we need to recall the requirements for
recoverability. Following from the theoretical analysis, the node
needs to be without incoming edges to restrict the set of allowed

schedules to only recoverable ones. First, the transaction’s own
exclusive lock needs to be acquired to cope with concurrent
transactions that want to access the node pointer sets. Because
no incoming edges are allowed for recoverability, we can
simplify the cycle check to a check for no incoming edges. If a
transaction has no incoming edges, it obviously cannot lie on a
cycle. All outgoing edges are deleted after acquiring the shared
locks for the outgoing transactions. Since the shared locks are
only acquired after the no incoming edges check, no deadlocks
can be introduced by concurrent commit attempts. Finally, the
node is added to the garbage collector that assures a deletion
after no other thread can see an edge to this node anymore.
The resulting commit process is shown in Algorithm 2.

Our graph structure is therefore suitable for many-core
systems since final serializability checks do not need to traverse
large parts of the graph and insertions into the graph only
require transaction local locks to guard the critical commit
procedure of the other transaction instead of a global mutex.

E. Optimized Graph Structure Example

In the following, we explain our proposed optimized graph
model with a small example, whose schedule is shown as
transaction timeline on the left side of Figure 2. The graph
representing the state of the green highlighted area is illustrated
on the right-hand side of the same figure. Transaction ¢, just
acquired the exclusive lock to determine that its node has no
incoming edges and all outgoing edges are safely inserted into
the graph. Every other transaction cannot acquire a shared
lock on ty, thus no other transactions can currently perform
edge insertions, edge deletions, or cycle checks involving %.
Furthermore, transaction ¢; cannot positively validate the check
for no incoming edges as long as transaction % still points to
it. Therefore, ¢1 needs to wait until the commit of ¢y and the
deletion of the edge (o, ¢1). At this point in time, transaction ¢y
is performing a read on value z. As a result, ¢, finds the conflict
pair with ¢;. The edge from t¢; is inserted by acquiring the
shared lock of ¢; and adding the respective other node into the
incoming and outgoing edge sets of the involved transactions.
Because the insertion of the edge ({1, ¢2) is executed in shared
lock, concurrent transactions accessing ¢; or to might not be
able to detect the edge at the moment. For instance, a concurrent
cycle check could also acquire a shared lock on ¢; but the edge
might not be inserted yet into the outgoing edge set. Hence,
the final check for no incoming edges in exclusive mode is
necessary to guarantee serializability.

F. Conflict Detection

The graph-based scheduler needs to derive conflict pairs to
find serializability issues. Conflict detection requires an ordered
access history for each data element. The ordering and storage
of the accesses is guaranteed with two additional columns for
each relation — a local sequence column and an ordered list
of tuple access entries. An example of such a relation can be
found in Figure 3. Algorithm 3 uses the tuple access history
to represent the conflict pairs. The list orders the data accesses
on a single data element and is therefore sufficient to detect

sharedLocks: {t2},
exclusiveLock: {}
incomingEdges: {to}
outgoingEdges: {t2}

sharedLocks: {},
exclusiveLock: {}
incomingEdges: {to, t1}
outgoingEdges: {}

sharedLocks: {},

N exclusiveLock: {to}
incomingEdges: {}

outgoingEdges: {t1, t2}

Fig. 2: Example of the transaction local locking graph

to ——F——+—+— % |
r(z) w(z) r(z) r(y) w(y) Cstart C
wait for ¢
t1 ——— |t]
r(x) r(z) w(z) Cstart c
wait for ¢;
ta — | L —
T(ZL’) T(Z) Cstart
A | B | SegNo | Op {Transaction, Operation}
1| x 5 * —— {O,w} — {1,r} = {1,w} - {21}
2 |y 4 * —+— {O,w} - {2} - {2,w}
3|z 2 * —+— {O,w}

Fig. 3: Example relation and operations in the access list

Algorithm 3: Conflict Pair Detection
input : Transaction tx, Operation op, List accessHistory, Cell
seqNoEntry, SGT sgt
currentld = accessHistory.push(tx, op)
while seqNoEntry # currentld do
| wait()
end
foreach elem € accessHistory do
if elem.id < currentld then
if isInConflict(elem.op, op) then
\ abort(!sgt.Edgelnsertion(elem.tx, tx)) (Alg 1)
end
end

the conflict pairs. The local sequence numbering is used to
determine the next operation that is allowed to be scheduled
in the access list and then executed on the data element. The
edges of the graph can simply be calculated by scanning over
the access history list of all relevant rows. An edge is inserted
into the graph if the other operation was scheduled beforehand
and is in conflict with the current operation. The ordering
is guaranteed by a spin-lock that waits until the sequence
number matches the list position of the transaction’s current
operation. Note that these spin-locks just guard the read or
write operation and are not hold until commit time of the
transaction. Immediately after the tuple access, the sequence
number is increased to allow the next transaction to operate on
the tuple. Hence, multiple threads accessing the same elements
do not need to wait for the other transaction to finish which is
a major benefit in comparison to locking based schedulers.

G. Cycle Checking Strategies and Graph Scalability

The regular offline cycle checking algorithm for our SGT
approach leverages a modified DFS search. For serialization
graph testing it is actually sufficient to just traverse the part of
the graph that needs to be validated. All other cycles within the
graph do not lead to a direct abort of the transaction because
no ordering constraints for this transaction are violated. In
comparison to the final check for no incoming edges as shown
in Algorithm 2, the cycle check only holds nodes in shared

Algorithm 4: Cycle Check with (reduced) DFS
input :Node& currentNode, Set& visitedPath
visitedPath.insert(currentNode)
lockSharedGuard(currentNode)
if currentNode.isAlive() then

foreach inNode € currentNode.inSet do
if visitedPath.contains(inNode) then
| return true
else if cycleCheck(inNode, visitedPath) then
| return true
end
end
visitedPath.erase(currentNode)
return false

lock. As a consequence, concurrent edge insertions are possible
such that a simultaneously inserted cycle might be undetected.
Therefore, we require that the commit-critical final check for
no incoming edges is guarded by an exclusive lock. On the
other hand, cycles that are introduced concurrently will be
detected with a following check or with an abort request from
another transaction. Moreover, this helps to scale our approach
to many cores because only the final check for no incoming
edges shortly blocks other threads from accessing a specific
node. Note that only nodes with incoming edges might be
blocking shortly. However, the incoming edge check is the first
operation and results in a direct release of the lock if it was
negative. Algorithm 4 shows the reduced DFS cycle detection.

In recent years, new online algorithms were proposed that
can be used to detect cycles in a directed graph. These online
algorithms can reduce the worst-case runtime by maintaining
a topological ordering of the graph [13], [14]. The algorithm
developed by Pearce et. al. does not rely on custom and hard
to parallelize data structures in contrast to the other proposed
algorithms. First, it computes a forward oriented DFS and a
backwards oriented DFS from the inserted edge. Afterwards, the
new topological ordering is calculated and assigned atomically.
Assuming an edge from x — y is inserted, the forward oriented
DFS starts from y, whereas the backward oriented one starts
from z. Hence, the algorithm only considers the affected region
of nodes. The real advantage of this algorithm, compared with
our optimized regular offline based cycle checker, is the number
of DFS executed. The computations are only triggered if the
ordering numbers between these two nodes are in the wrong
order, so only if ord(y) < ord(z). Unfortunately, multiple
updates on the graph could break the topological ordering

requiring a single-threaded execution. However, maintaining
and updating the topological order is expensive on many-core
machines.

Today, database systems often span multiple nodes for
increased availability and performance. Due to the scaling
capabilities (Algorithm 4), our graph approach can be extended
to leverage multiple nodes by introducing a special node type
that indicates a remote server. Each server stores a local graph
that represents conflicts between its local transactions but has
incoming and outgoing edges from remote servers. The remote
server node needs a mapping between the remote transactions
and the host transactions such that all possible conflict edges
can be determined due to multi-edges from different remote
transactions. Since the final commit only considers the current
node, the commit process remains unchanged. For edge
insertion and cycle checks, remote accesses to the other server
must be possible to acquire shared locks on remote transaction
nodes and to traverse the fully connected graph (e.g. RDMA).
With a partitioning scheme where conflicts mostly occur locally,
only a few transactions need to traverse parts of the graph
that are located on remote nodes such that the overall latency
remains small. This is an interesting avenue for future work.

H. Implementation Details

Our many-core approach depends on massively parallel data
structures. Our developed data structures use atomic operations
to guarantee high operation throughput in a multi-access
workload. Most concurrency control protocols require totally
ordered transaction IDs to guarantee serializability. However,
this leads to bottlenecks for myriads of small OLTP transactions
due to many updates of global atomic counters. In our approach
we can simply use the address of the transaction’s node in the
graph as the transaction ID to avoid the global counter problem.
Furthermore, we can reuse these nodes, including their edge
sets, after the commit and deletion of the transaction.

Commits are only possible if the transaction has no in-
coming edges and must be postponed otherwise. After every
unsuccessful commit process a cycle check determines whether
the transaction is now able to commit. In our implementation
we repeatedly re-check the ability to commit because every
transaction is pinned to a single hardware thread.

The graph-based scheduler allows to optimistically read
dirty records which will introduce cascading aborts. Before
removing the w-r / w-w edges from an aborted node, the child
nodes are simply marked for abortion. At the time the children
have no incoming edges, they are already marked and cannot
commit anymore. If multiple uncommitted transactions could
modify one data element, which is possible in the original
SGT definition, the undo of transactions must be synchronized.
In particular, the transactions need to undo their actions in
the reverse order of the data element accesses. Accesses on
different data elements might happen in an arbitrary ordering
between multiple transactions. Hence, these cascading aborts
lead to unnecessary system load and are not useful for both
the user and the system. Therefore, only one uncommitted
transaction is allowed to modify a data element.

1. Serializability Properties and Correctness

Because the theoretical aspects of SGT are well studied, we
only need to show that every accepted (committed) transaction
created by our SGT implementation would also be accepted
by the theoretical concept of SGT. In the following Gen(algo)
represents the class of schedules an algorithm generates.

Theorem 2.
Gen(Our Many-Core Optimized SGT) C CSR

Proof. Previous work shows that Gen(SGT) = C'SR. Further,
the nodes and edge insertions into the graph remain the same
also for our approach. First, we show that our implementation
cannot encounter a cycle while committing. The transaction
that wants to commit must lock its own node exclusively. A
successful lock guarantees that no other transaction currently
holds any lock on this node nor will any lock request be
accepted. Consequently, the node cannot be involved in a cycle
check or edge insertion currently. If the node has no incoming
edges, it is assured that the node is not on a cycle and no edges
are in flight at the moment. Concurrent transactions that wait
for the committing transaction could only introduce outgoing
edges. Hence, it is allowed to commit according to the basic
SGT idea and the waiting transactions can access the tuple
logically after the commit.

Second, at the time the node has no incoming edges, it is
also allowed to be removed from the graph according to the
SGT definition without introducing cycles. After the commit no
edges to the node can be introduced anymore and all outgoing
edges of the committed transaction can also be deleted. [

Besides only accepting log-recoverable schedules our ap-
proach has the pleasant property of providing schedules that
always have the same serialization order and commit order.
A conflict equivalent schedule could just rearrange a later
committed transaction before an already committed one without
violating C'SR constraints. On the other hand, users expect to
schedule later transactions after the committed changes. User
applications often rely on the order of executed statements
(applications are usually sequential). Such schedules that restrict
the reordering are also known as order preserving conflict
serializable (OC'SR). The commit order is often expected
to be aligned to the serialization order which is known as
commit order preserving (COCSR). We allow all possible
interleavings of read and write operations that are CSR valid
but might delay a transaction’s commit to ensure the order
preserving properties. Therefore, we also consider read-write
edges before committing as explained in Section II-C.

Traditional schedulers such as strong 2PL also produce a
subset of COC'SR but our approach is able to accept a larger
fraction of order preserving schedules. For instance, s; =
rilz] wila] rafz] rafz] welz] rsly] wsly] cs mily] wilyl e1 e
cannot be accepted by a two-phase scheduler because of
the conflict between transaction ¢; and ¢5, whereas our SGT
implementation could accept this operation interleaving. If so =
ri[z] wilz] rafz] rofz] walz] c2 raly] wsly] ez rify] wily] c1,

with ss € CSR and s ¢ OCSR = sy ¢ COCSR
(sh, = t3 t1 t2) is requested, our SGT implementation would just
delay the commit of 5. In particular, the schedule s; would be
executed on our system which is also order preserving conflict
serializable. SS2PL is log-recoverable but requires that all read
and write locks are held until commit time. The two-phase
property and the write lock rule accept fewer schedules than our
approach, i.e., SS2PL cannot generate a transaction interleaving
that would be rejected by our graph-based scheduler. Our
approach generates the useful schedules of COCSR N RC
because of the introduced commit delays. Schedules affected
by heavy cascading aborts (multiple uncommitted writers on a
tuple) are deliberately restricted to achieve low latency.

III. MULTI-VERSION EXTENSION

Having explained the traditional single-version graph-based
scheduler, we briefly discuss optimizations that help to increase
concurrency. Traditional concurrency control algorithms have
difficulties in executing long-running readers simultaneously
with update-heavy transactions. Previous work shows that
multi-version concurrency control (MVCC) helps to address
the problem of long-running read-mostly transactions. The
difference to the traditional single-version approach is that
every data element is now accessible in different versions and
the scheduler has to decide which version to read. In our design
we deliberately favor long-running read-only queries, which
are the most prominent ones in OLAP workloads.

Writes store the updated data regulary in the base table but
snapshot the row beforehand which creates a list of previous
states of the row. Every snapshot is assigned with the current
epoch state that is used within the epoch based garbage
collector of the database system. The epoch state is used
similarly to transaction ids in classical multi-version schedulers
to determine the access of the correct version. In comparison
to increasing transaction ids, the epoch state is more coarse-
grained. Thus, it does not introduce a single update bottleneck
because not every transaction requires an increment.

Write transactions and short readers (OLTP) always access
the newest version (i.e. the base table version) and use the
single-version scheduler mechanism as described in Section II.
On the other hand, OLAP transactions access (i.e. read) a
specific version calculated with the help of the current epoch
state. The idea is that an OLAP transaction can only read
a virtual state of the database in which no writers seem to
be active anymore. Because OLAP transactions do not write
any values, they do not need to insert edges into the conflict
graph. Therefore, no conflicts are introduced because the read
seems to be executed completely after all concurrent writers
are finished. Moreover, all future writers are executed on a
database state that is logically after the OLAP queries.

IV. EVALUATION

In this section we evaluate our many-core optimized graph-
based scheduler approaches. Our goal is to refute experimen-
tally the assumption that an SGT scheduler is impractical.
We show that our approach has very competitive OLTP

throughput and that pessimistic schedulers such as our graph-
based algorithm can outperform optimistic schedulers in high
contention settings. Moreover, our approach has the lowest
abort rate while providing expected user experience by retaining
the order of already committed transactions. Further, we show
that also in low contention settings the overhead of maintaining
the graph is marginal. Our multi-version optimization helps
us to efficiently process expensive and long-running read-only
queries while executing transactional queries.

For the experiments we implemented a prototype database
system that stores all its data in DRAM. Every transaction
is scheduled on exactly one worker thread from the pool
of available workers which are executed on a pinned core.
Our system experiences truly concurrent transactions that
are executed by the transaction’s worker thread. Concurrent
epoch-based garbage collection is used to minimize memory
consumption. Aborts result in an undo and are rescheduled
if needed with live-lock detection. We evaluate the following
approaches in our prototype database (available at [15]).

e SGT: Single-version graph-based scheduler with DFS

e O-SGT: Single-version graph-based scheduler with online

topological ordering
e M-SGT: Multi-version graph-based scheduler with DFS
e MVOCC: Predicate multi-version OCC scheduler that uses
a global lock for serializability validation [3]

e TicToc: TicToc with timestamp history derived from its
original DBX1000 implementation [16]

e 2PL: 2PL with row based read-write locks (using atomic
CAS operations) and deadlock prevention (wait-die) [17]

All performance numbers were measured on a four-socket
NUMA server (64-bit Ubuntu, gec-7) with Intel(R) Xeon(R)
CPU E7-4870 v2 processors. Each processor has 15 cores and
twice as many hyper-threads. Every socket is connected to
256GB DRAM totaling 1024GB DRAM.

A. SmallBank

SmallBank mocks a simple banking database with financial
typical transactions such as withdrawing money from checking
accounts. It was designed to generate non-serializable schedules,
in contrast to TPC-C, on isolation levels less restrictive
than serializable [18]. OLTP-bench, which is a standardized
benchmarking tool for databases, defines a configuration for
SmallBank that we also use [19]. Thus, 25% of all operations
on accounts are executed on a hotspot area of 100 tuples.

We start the experimental evaluation by studying unusual
high contention. Figure 4 shows the throughput (commits
per second), the abort rates for the different algorithms and
the transaction latency in this high contention workload. All
transactions request data elements of only 100 customers
(uniformly distributed). Pessimistic approaches, such as locking-
based schedulers, are known to perform well in high contention
workloads. TicToc as the main OLTP competitor has a lower
overall performance compared with our SGT implementation.
Due to MVOCC'’s global locking approach to validate the read
/ write sets, the OLTP throughput is very limited on a NUMA
scale server. The average transaction latency of all approaches,

== 2PL == MVOCC =A= M-SGT == SGT =3¢= 0-SGT =&— TicToc

110"

3% 10" e - 3y 10-1 = 8 /9/(3
i 9) < > r :
9 2x10"° = &€ 2x10° /?’/ §1x10"_ 3
[£ 5 /
1x10% H £ 1x10 ’// T £ -f £
4 1x10°?
= £ 3
0x10% 4 0x10%° ——‘@’é =) |
0 20 40 60 0 20 40 60 0 20 40 60
OLTP threads OLTP threads OLTP threads
(a) Throughput (b) Abort rate (c) Latency
Fig. 4: SmallBank workload with only 100 customers and high contention.
8x 102 1.5x10" =
7.5%10" /4‘ A
A 4 o 6x1072 e . /4/
” “© A 4 © A L ,, 10x10 —
£ 50x10 = & 102 — < A —
= = - S = /;/
25 %10 7 /?/ § , b 5.0 x 10" // /T/\
5 x I 2x10 L //‘//
———
0.0><10’°-' 0x10" 040><10'°—'
0 20 40 60 0 20 40 60 0 20 40 60

OLTP threads

(a) Throughput medium contention for Small-
Bank with 1000 customers

OLTP threads
(b) Abort Rate medium contention

OLTP threads

(c) Throughput low contention for SmallBank
with 10000 customers

Fig. 5: SmallBank workload with medium and low contention.

except for the global locking MVOCC, is similar. The abort
rate (%) is higher for 2PL and MVOCC than for the other
algorithms. 2PL. and MVOCC abort directly at write conflicts
even if the conflict is not involved in a non-serializable cycle.
Reducing the contention to a more reasonable level results
in performance improvements. The algorithms can achieve
twice as much throughput if 1000 customers have accounts
at the SmallBank as shown in Figure 5a. Our single-version
SGT approach is still able to outperform TicToc in terms of
minimizing aborts and many-core throughput (Figure 5b). In
Figure 5c the number of customers is incremented resulting in
low contention outside the hotspot area. The optimistic locking
approach of TicToc performs best in very low contention
settings as it does not encounter issues in the validation phase.

In all of the above settings, the online cycle checking SGT is
not able to achieve better throughput than the regular DFS based
one. The main reason is the maintenance of the topological
order and the resulting contention on the order mapping. Since
the multi-version SGT has a reduced performance compared
to our single version SGT, introducing multiple data versions
is not free after all. The deletion of versions and additional
data local atomic compare and swaps at the version pointers
slightly reduce the overall transaction throughput.

B. OLAP Extended SmallBank

Many workloads in practice are a mixture of OLTP and
OLAP transactions. Therefore, we introduce a transaction that
tells the bank employees how much money is currently within
all bank accounts. As a result, a complete table scan transaction,
which is often scheduled in real world applications, is added.
We assume that a query optimizer can decide if a transaction is
executed as OLTP or OLAP transaction due to the existence of

writes and the amount of read operations. The experiment was
designed such that the system uses a fixed number of worker
threads (all available cores) and splits the workload between
OLTP and OLAP threads. In Figure 6 the extended benchmark
is shown in low contention setting. Due to the updates during
the long-running reader, TicToc is able to produce the best
OLTP throughput but is not able to commit OLAP transactions.
Even with transaction history only a small amount of updates
can be handled before the read versions are not matching
anymore and a transaction needs to abort. The validation of the
read set at the commit time is very expensive for TicToc. On
the other hand, MVOCC has good OLAP throughput but the
low performance on concurrent OLTP transactions prohibits its
usage for mixed workload. Our multi-version SGT approach
can handle both scenarios well and has the lowest overall
transaction latency. The OLTP performance is not as good as
the one of TicToc due to the overhead for multi-versioning but
still very high. Because our epoch-based multi-version approach
uses batch synchronization many small OLAP readers (10,000
tuples) perform better on MVOCC. Nevertheless, the overall
performance is nicely balanced such that our multi-version
approach is the best choice for mixed workloads.

C. YCSB

The YCSB benchmark, originally developed as a key-value
store benchmark, is often adopted for benchmarking classical
concurrency control protocols by using multiple queries per
transaction [20]. Because of the zipfian distribution (6 value) of
the tuple accesses, varying contention levels can be simulated.
We implemented the standard workload A and used 16 queries
per transaction of which 50% were writes. In Figure 7a the
throughput is shown according to different contention levels

—6— MVOCC —A— M-SGT —&— TicToc

e]
- Y 6x 10" 9 E ?/@/@/ E
1x10"7 ; 1410 _—
+4
@ /@/ L\A 4x10" £
F 2 > E E
i 5x10"° /A/A b ’ g \
X // 2x 10" 9 1x10?
\ 3 -Z\A\A ;\ &
S
0x10% \ — 0x10%° |>5 E T~
0 20 40 60 60 40 20 0 0 20 40 60

OLTP threads

OLAP threads

OLTP threads

Fig. 6: Mixed workload for SmallBank with 10000 customers. The experiment was designed such that #OLTP threads + #OLAP
threads = 60. The combined average transaction latency is shown on the right graph.

using 10 million records and 60 cores. Our approaches have
very competitive throughput to the best performing algorithm
but reduce the number of aborts significantly as shown in
Figure 7b. In the very high contention setting of 8 = 0.9 (0.1%
of the data is accessed by 35% of the queries), TicToc aborts
twice as many transactions than our SGT variants. Since ten
string columns (10 * 100B / tuple) are stored, multi-versioning
is expensive in an update-heavy workload.

We also implemented the scan operation defined in YCSB.
Each scan accesses 1% of the data. The benchmark, shown in
Figure 7c, executes workload A with additional scan operations
in a varying percentage (# = 0.7). Our multi-version approach
can outperform the other algorithms as soon as scans are
necessary. In comparison to TicToc, MSGT has a throughput
boost of 1.75x. With an increasing number of expensive scans,
the relative performance of global locking MVOCC improves.

The standard workload B describes a typical read-mostly
transaction system. For testing concurrency protocols we again
use 16 queries of which 95% are reads. The performance was
evaluated with a varying contention factor, shown in Figure 8.
In low and medium contention settings our approach has
competitive throughput compared with TicToc and outperforms
2PL. Already at medium contention 2PL’s approach of holding
the locks until the end of the transaction decreases the
throughput significantly. In very high contention scenarios,
the short-term access locks of our approaches reduce the
performance. On the contrary, optimistic protocols, such as
TicToc, benefit from very few updates, almost no aborts, and an
increasing cache-locality. Hence, the optimistic reads succeed
and other threads invalidate cache lines only infrequently.

D. TATP

Further interesting properties of the algorithms can be shown
with the TATP benchmark [21]. The primary key distribution is
skewed to get a non-uniform row access pattern which increases
tuple contention within the workload. TATP transactions can
hardly generate conflict cycles. Therefore, a scheduler accepting
the complete schedule class CSR should almost never abort. Our
SGT approach achieves a performance of more than 10 million
transactions per second at the highest contended version as
shown in Figure 9. The throughput of our SGT implementation
is higher than that of all the competitors. All the SGT versions
as well as TicToc have very low abort ratios - as expected. Both
schedulers are able to exploit a large fraction of the CSR class

and do only need to abort if the UpdateSubscriber transaction
is interleaved with the same keys. In contrast, MVOCC aborts
if two transactions want to write on the same data element.
2PL with deadlock prevention (wait-die) aborts the newer
transactions if two writes are requested to avoid deadlocks.
Due to the simplicity of TATP, the online cycle checking of our
SGT approach suffers from inserting and updating the ordering
map and is therefore only as fast as 2PL.

E. Space and Time Requirements

Another interesting property is the CPU overhead of main-
taining an ACID-consistent database state with conflict graphs.
For better insights we tested how many CPU cycles are needed
for pure cycle checking. Table I shows the results for the
previously tested workloads in terms of average cycles needed
per cycle check as well as per transaction. With increasing write
contention the cycle checks get more expensive as the graphs
tend to grow larger. For example, the TATP (100) workload
does not require aborts and has short graph paths. On the other
hand, YCSB A with 6 = 0.9 has long paths that are frequently
cyclic. Usually, O-SGT requires a few instructions less but has
the additional overhead of inserting and deleting transactions
from the ordering map which can be a bottleneck for myriads
of very small transactions. Altogether, the amount of cycles
needed is only a small fraction of the total transaction costs.

We designed an experiment that can separate the concurrency
control overhead from the actual transaction workload. In this
experiment, we executed the previous benchmarks but turned
off the tuple access history, conflict detection, cycle checks,
and restart handling. The only concurrency requirement for
”No SGT” is that tuple accesses are serialized. The results are
shown in Table II. Our approach needs to spend roughly one
third of the time for concurrency control in the high contention
setting of TATP and SmallBank (100). On the other hand, low
contention benchmarks such as YCSB B (6 = 0.6) do not show
any significant performance reductions. For YCSB A (6 = 0.9),
a large fraction of the time is spent on concurrency control due
to additional restarts. Turning off concurrency control applied
to other protocols showed very similar results. For instance,
TicToc also spends 85.7% of its time for retaining ACID.

Our implementation as well as most other concurrency
control protocols rely on additional column(s) to determine
serializability. In particular, one column for the tuple access
entry lists and one column for the next sequence number are

== 2PL == MVOCC =A= M-SGT == SGT =3¢= 0-SGT =&— TicToc

+0 T
1.2x10% 1x107 E 1x10%° --&
ol o\ S E 3
5] S 1x10 !)a/ >
, 8010 \\ q, E 2/ // 3 S 1x107
; RN “-u’ = E E
" N E yay/A 2 ——
- £ 1x10 —
4.0 x10 \ 8 E /d/ 3 F1x10m &::\\\\ 3
f < LA 3 et iy g e N
=
0.0x10"° ; 1x10°3 T -
0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.0l 002 003 0.04 0.05
Theta Theta Scan Percentage

(a) Throughput for update-heavy
workload (50% writes, 16 queries/tx).

(b) Abort rates for update-heavy
workload (50% writes, 16 queries/tx).

(c) Throughput for different scan percentages
accessing 1% of the data (6 = 0.7, 50% writes).

Fig. 7: Different YCSB A workloads with a table size of 10 million entries using 60 cores.

°© P 4x1072
e 1.5x10"7 v
1x10" — // £ 3x107? i
" ¥ 1.0x10"7 o //// 4
1> o 4 £ 2x10?
F 5x10" // 3
;Ir 5.0 x10*° < |, 102 _—
0 +0 &
0% 100 0.0 x 10 ?% 0x 10 —
0 20 40 60 0 20 40 60

0.00 0.25 0.50 0.75

Theta

Fig. 8: Read-Mostly YCSB B workload
with 16 queries/tx: 95% reads, 5% writes.

OLTP threads
(a) Throughput (100 entries)

OLTP threads
(b) Abort rate (100 entries)

Fig. 9: TATP workload with high contention.

Benchmark SmallBank TATP YCSB A (0.9) YCSB B (0.6) Benchmark SmallBank TATP YCSB A (0.9) YCSB B (0.6)
SGT 901 681 1997 783 Memory 499 B 456 B 876 B 544 B
O-SGT 899 654 1962 681
TABLE III: Average transaction memory consumption
SGT (tx) 1033 687 4516 788
0-SGT (tx) 1026 656 4428 682 F. Evaluation Summary

TABLE I: Cycles needed for cycle testing with 60 cores.

Benchmark SmallBank TATP YCSB A (0.9) YCSB B (0.6)

No SGT 5.09M 24.1M 1.55M 0.94M [TX/s]

SGT 3.25M 17.4M 0.15M 0.91M [TX/s]
Overhead 36.1% 27.8% 90.6% 2.8%

TABLE II: Overhead of maintaining accesses, conflict detection,
cycle tests, aborts, and live-lock handling [TX/s with 60 cores].

required. An implementation needs additional 16 bytes for the
list header (atomic pointer and order number) and 8 bytes
per tuple for the sequence number. For example the YCSB
benchmarks store 1008 bytes per tuple, hence the overhead
equals to 2.4%. Moreover, an optimization is possible such
that only a pointer is stored. The list header and the sequence
number are thereafter created lazily. Thus, only currently
active tuples need the list and sequence number overhead
which reduces the static memory requirements to the same
as needed for TicToc or 2PL. Besides the static overhead our
approach needs to store the transaction’s access history and
its graph node. Due to concurrent garbage reclamation the
memory consumption is bounded according to the number of
simultaneously active transactions. In Table III we evaluate
the average amount of memory needed to store a transaction’s
access history and graph requirements. The space overhead
depends on the density of the graph edges as YCSB workloads
have higher requirements. However, the overhead is bounded.

Our novel graph-based scheduler is able to outperform the
competitors on high-contention transactional workloads while
aborting the fewest amount of transactions. With less contention
our approach is able to achieve very competitive throughput
in comparison to highly optimized optimistic schedulers —
without introducing unexpected aborts. Thus, database users
only encounter issues if the schedule violates the conditions for
conflict serializability. We provide the best level of transaction
isolation and are able to scale perfectly with an increasing
number of execution cores. Moreover, our read-only addition
helps to outperform the competitors on mixed workloads since
other protocols are optimized for either OLAP or OLTP. We
also show that in every contention setting the overhead of
maintaining the graph is marginal. Thus, the assumption that
graph-based schedulers are impractical can be refuted.

V. RELATED WORK

The concept of ACID transactions is one of the oldest and
most prominent features of databases. We give an overview of
different approaches in particular those that are closely related
to our concurrency control algorithm.

A. Concurrency Control Strategies

Concurrency control algorithms are used to isolate trans-
actions such that every transaction seems to run exclusively
on the data. Two-phase locking [1] protocols are serialization
strategies that produce a real subset of OC'SR schedules [6].

In two-phase locking, all locks must be acquired before any
lock can be released. By design, no two conflicting locks can
be interleaved between transactions (deadlock and abort) in
2PL. Strict and strong 2PL grant their locks the same way as
normal 2PL but release their write locks / read & write locks
at once, reducing the accepted schedules to a true subset of
COCSR [11]. Deadlock detection is usually handled with a
wait-for graph (WFG) [17] but also deadlock prevention is
possible by reducing the number of accepted schedules [22].
Many traditional database systems use 2PL as their concurrency
control strategy such as IBM DB2 and MySQL [2].

Because the locking introduced by 2PL degrades perfor-
mance in today’s multi-core architectures, most of the new
database systems use an optimistic version of timestamp
allocation. The basic idea for both optimistic and classic
timestamp protocols is the allocation of a timestamp for
each transaction (e.g. from a global natural number counter).
Afterwards each operation of the transaction is assigned to this
timestamp. Conflicting operations must be ordered according
to the timestamps which leads to the following basic timestamp
ordering rule if p;(z) and g¢;(x) are in conflict. p;(x) is
executed before ¢;(z) iff the timestamp of ¢; is smaller than
the timestamp of ¢; [23], [24]. All timestamp algorithms
can only be a subset of C'SR [11]. In modern many-core
architectures global counters can already be performance
bottlenecks although only a single atomic add instruction
is needed. As a result, most modern timestamp ordering
concurrency control schedulers cannot scale good enough with
a large number of cores [5], [25]. Optimistic ordering can
be classified into three phases — read, validation, and write.
In the read phase all reads and transaction local writes are
performed on the data. During validation the database scans
for conflicts with concurrent transactions. If the transaction
is positively validated, the local changes are written to the
database. The backward oriented optimistic concurrency control
(OCC) protocol validates the read set of the transaction in
validation (¢,) with the write set of all transactions that were
not committed before the start of ¢,,. For the forward oriented
validation the write set of ¢, needs to be disjoint with the read
set of all concurrent read-phase transactions [4], [26].

In recent years, the focus of optimizing these protocols
shifted from reducing memory consumption to better perfor-
mance on multi-core machines. The problems that arise from
global timestamp counters limit the scale up especially for
OLTP workloads. The concurrency control scheduler used in
SILO centers around a new calculation of transaction ids [5].
Transaction ids contain the system-wide global epoch counter
of the time the transaction commits in the higher bits. Further
bits are used to distinguish transactions within the same epoch.
The local epoch bits do not represent the relative order among
transactions. Only the read-after-write dependencies can be
captured. As a result, the amount of concurrency is restricted.
A more promising OCC protocol is TicToc which is a time
traveling optimistic concurrency control scheduler [16]. TicToc
avoids a global timestamp by calculating timestamps with the
help of several parameters such as the read and write sets. These

timestamps are computed lazily and thereafter checked whether
they are valid. TicToc uses the concept of dynamic timestamp
allocation, but instead of assigning them to transactions, they
are assigned to tuples [27].

Optimistic protocols perform well if the amount of conflicts
is small but introduce many aborts with a rising number of
conflicts. The mostly-optimistic concurrency control (MOCC)
has been developed to address the problems of highly con-
tended workloads [28]. For highly contended accesses, MOCC
maintains a modified version of 2PL to lock on a tuple
granularity, on less contended tuples it relies on OCC’s high-
performance without taking read locks. One challenge of
MOCC is the detection of such “hot” tuples. We evaluated
both optimistic protocols and 2PL in our experiments section
which are the components of MOCC. Optimistic protocols can
benefit from better abort strategies. In particular, BCC proposes
to abort according to commit-critical patterns in comparison
to a changed read-set [29]. Intelligent graph-based batching
and transaction reordering during the validation phase can
increase throughput for optimistic protocols. However, batching
based systems include trade offs between transaction latency,
reordering freedom, and amount of aborts [30].

B. Multi-Versioning

Storing data in multiple versions helps to gain performance
boosts for long-running readers [31]. Multi-version concurrency
leads to the development of many schedulers [31], [6] which are
used in state-of-the-art databases such as SAP HANA [32], [33],
Microsoft Hekaton [34], [35], HyPer [36], and PostgreSQL [37].
Empirical results show that the concurrency control protocol
choice is a crucial step in gaining good performance [38].
Many multi-version based systems only provided Snapshot
Isolation (SI) instead of full serializability. However, Berenson
et. al. shows that there exist schedules that are valid in SI but
invalid in the context of conflict serializability [9]. To guarantee
conflict serializability the concept of serialization certifiers
was developed. It is based on anti-dependencies between
two transactions. Anti-dependencies occur if a transaction
creates a new version of a tuple and its previous version was
already read by another transaction. When two consecutive anti-
dependencies are detected, one of the transactions involved is
aborted [39], [40]. PostgreSQL uses this Serializable Snapshot
Isolation (SSI) strategy to enforce ACID [37]. PSSI is a graph-
based scheduler on top of anti-dependencies to minimize the
unnecessary aborts [41]. However, multi-threaded performance
is limited due to a global lock for the certifier graph.

Hekaton and HyPer use a multi-version optimistic concur-
rency control algorithm to achieve full serializability. Hekaton
stores both read and write sets to validate transactions. HyPer
implements precision locking to reduce storage and validation
efforts for readers. Our multi-version implementation is a
heterogeneous system since read-only transactions are treated
differently and are executed on a snapshot of the database.
HyPer initially used a fork-based heterogeneous database but
moved to a homogeneous one later [42], [3]. Kernel optimiza-
tions can help to speed up heterogeneous processing [43].

VI. CONCLUSION

In this paper, we presented a graph-based scheduler that
scales perfectly with a rising number of cores which is
one of the most important properties in the many-core age.
Our concurrency control algorithm is able to handle both
OLTP and OLAP workloads efficiently with the help of
our heterogeneous multi-versioning extension. For read-heavy
applications further optimization, such as precision locking to
track the read accesses or unchanged data intervals, can be
integrated as well [3]. Due to the nature of detecting conflict
cycles, the presented scheduler can accept basically all useful
schedules that are recoverable and commit order preserving
conflict serializable. Because of the high throughput of our
approach, the assumption that SGT is impractical can be refuted.
The heterogeneous multi-versioning approach separates the
transactional workload from the analytical one. This helps
to gain high analytical performance while providing the best
isolation level for the transactional workload as well as for
the analytical transactions. In particular, the anomalies arising
from the widely used snapshot isolation level require additional
application code to handle write-skew issues which results in
reduced performance. Further, our approach minimizes the
number of aborted schedules due to the usage of the conflict
graph which greatly improves user experience. All in all,
we show that the almost forgotten concept of graph-based
concurrency control can be used as high-performance and
theoretical superior scheduler on many-core servers.

This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 725286). H =

REFERENCES

[1] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger, “The notions of
consistency and predicate locks in a database system,” Communications
of the ACM, vol. 19, no. 11, 1976.

[2] D. T. McWherter, B. Schroeder, A. Ailamaki, and M. Harchol-Balter,
“Priority mechanisms for oltp and transactional web application,” in /CDE,
2004.

[3] T. Neumann, T. Miihlbauer, and A. Kemper, “Fast serializable multi-
version concurrency control for main-memory database systems,” in
SIGMOD, 2015.

[4] H.-T. Kung and J. T. Robinson, “On optimistic methods for concurrency
control,” TODS, vol. 6, no. 2, 1981.

[5] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden, “Speedy
transactions in multicore in-memory databases,” in SOSP, 2013.

[6] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control
and Recovery in Database Systems. Addison-Wesley, 1987.

[7]1 C. Mohan, H. Pirahesh, and R. Lorie, “Efficient and flexible methods for
transient versioning of records to avoid locking by read-only transactions,”
in SIGMOD, 1992.

[8] A. Adya, B. Liskov, and P. O’Neil, “Generalized isolation level

definitions,” in ICDE, 2000.

H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil,

“A critique of ansi sql isolation levels,” in SIGMOD, 1995.

M. A. Casanova, The Concurrency Control Problem for Database Systems,

ser. Lecture Notes in Computer Science. Springer, 1981, vol. 116.

G. Weikum and G. Vossen, Transactional Information Systems: Theory,

Algorithms, and the Practice of Concurrency Control and Recovery.

Elsevier, 2001.

T. Hadzilacos and N. Yannakakis, “Deleting completed transactions,”

JCSS, vol. 38, no. 2, 1989.

D. J. Pearce and P. H. Kelly, “A dynamic topological sort algorithm for

directed acyclic graphs,” JEA, vol. 11, 2007.

[9

—

[10]

[11]

[12]

[13]

[14] D. Ajwani, T. Friedrich, and U. Meyer, “An O(n27%) algorithm for
online topological ordering,” Electronic Notes in Discrete Mathematics,
vol. 25, 2006.

D. Durner, https://github.com/durner/No-False-Negatives, 2019.

X. Yu, A. Pavlo, D. Sanchez, and S. Devadas, “Tictoc: Time traveling
optimistic concurrency control,” in SIGMOD, 2016.

R. Agrawal, M. J. Carey, and M. Livny, “Concurrency control perfor-
mance modeling: Alternatives and implications,” TODS, vol. 12, no. 4,
1987.

M. Alomari, M. Cahill, A. Fekete, and U. Rohm, “The cost of
serializability on platforms that use snapshot isolation,” in /CDE, 2008.
D. E. Difallah, A. Pavlo, C. Curino, and P. Cudre-Mauroux, “Oltp-bench:
An extensible testbed for benchmarking relational databases,” in PVLDB,
vol. 7, no. 4, 2013.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in SoCC, 2010.

S. I. Technology, “Telecommunication Application Transaction Processing
(TATP) Benchmark Description,” 2009.

D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis II, “System level
concurrency control for distributed database systems,” TODS, vol. 3,
no. 2, 1978.

R. H. Thomas, “A majority consensus approach to concurrency control
for multiple copy databases,” TODS, vol. 4, no. 2, 1979.

P. A. Bernstein and N. Goodman, “Timestamp-based algorithms for
concurrency control in distributed database systems,” in VLDB, 1980.
X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker, “Staring
into the abyss: An evaluation of concurrency control with one thousand
cores,” in PVLDB, vol. 8, no. 3, 2014.

T. Hérder, “Observations on optimistic concurrency control schemes,”
Information Systems, vol. 9, no. 2, 1984.

R. Bayer, K. Elhardt, J. Heigert, and A. Reiser, “Dynamic timestamp
allocation for transactions in database systems,” in DDB, 1982.

T. Wang and H. Kimura, “Mostly-optimistic concurrency control for
highly contended dynamic workloads on a thousand cores,” in PVLDB,
vol. 10, no. 2, 2016.

Y. Yuan, K. Wang, R. Lee, X. Ding, J. Xing, S. Blanas, and X. Zhang,
“Bee: Reducing false aborts in optimistic concurrency control with low
cost for in-memory databases,” in PVLDB, vol. 9, no. 6, 2016.

B. Ding, L. Kot, and J. Gehrke, “Improving optimistic concurrency
control through transaction batching and operation reordering,” in PVLDB,
vol. 12, no. 2, 2018.

D. P. Reed, “Naming and synchronization in a decentralized computer
system,” Ph.D. dissertation, Massachusetts Institute of Technology, 1978.
F. Férber, S. K. Cha, J. Primsch, C. Bornhovd, S. Sigg, and W. Lehner,
“Sap hana database: Data management for modern business applications,”
SIGMOD Record, vol. 40, no. 4, 2012.

V. Sikka, F. Fiarber, W. Lehner, S. K. Cha, T. Peh, and C. Bornhovd,
“Efficient transaction processing in sap hana database: The end of a
column store myth,” in SIGMOD, 2012.

C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R. Stoneci-
pher, N. Verma, and M. Zwilling, “Hekaton: Sql server’s memory-
optimized oltp engine,” in SIGMOD, 2013.

[35] P-A. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Patel, and
M. Zwilling, “High-performance concurrency control mechanisms for
main-memory databases,” in PVLDB, vol. 5, no. 4, 2011.

A. Kemper and T. Neumann, “Hyper: A hybrid oltp&olap main memory
database system based on virtual memory snapshots,” in /CDE, 2011.
D. R. Ports and K. Grittner, “Serializable snapshot isolation in postgresql,”
in PVLDB, vol. 5, no. 12, 2012.

Y. Wu, J. Arulraj, J. Lin, R. Xian, and A. Pavlo, “An empirical evaluation
of in-memory multi-version concurrency control,” in PVLDB, vol. 10,
no. 7, 2017.

M. J. Cahill, U. Rohm, and A. D. Fekete, “Serializable isolation for
snapshot databases,” TODS, vol. 34, no. 4, 2009.

A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha, “Making
snapshot isolation serializable,” TODS, vol. 30, no. 2, 2005.

S. Revilak, P. O’Neil, and E. O’Neil, “Precisely serializable snapshot
isolation (pssi),” in ICDE, 2011.

H. Miihe, A. Kemper, and T. Neumann, “Executing long-running
transactions in synchronization-free main memory database systems,”
in CIDR, 2013.

A. Sharma, F. M. Schuhknecht, and J. Dittrich, “Accelerating analytical
processing in mvce using fine-granular high-frequency virtual snapshot-
ting,” in SIGMOD, 2018.

[15]
[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]
[24]

[25]

[26]
(27]

[28]

[29]

(30]

[31]

[32]

[33]

[34]

[36]
371

[38]

[39]
[40]
[41]

[42]

[43]

https://github.com/durner/No-False-Negatives

