
Analytics on Fast Data: Main-Memory Database Systems
versus Modern Streaming Systems

[Experiments and Analyses]

Andreas Kipf1 Varun Pandey1 Jan Böttcher1

Lucas Braun2 Thomas Neumann1 Alfons Kemper1

1Technical University of Munich
{kipf, pandey, boettche, neumann, kemper}@in.tum.de

2ETH Zurich
braunl@inf.ethz.ch

ABSTRACT

Today’s streaming applications demand increasingly high
event throughput rates and are often subject to strict la-
tency constraints. To allow for more complex workloads,
such as window-based aggregations, streaming systems need
to support stateful event processing. This introduces new
challenges for streaming engines as the state needs to be
maintained in a consistent and durable manner and simulta-
neously accessed by complex queries for real-time analytics.

Modern streaming systems, such as Apache Flink, do not
allow for efficiently exposing the state to analytical queries.
Thus, data engineers are forced to keep the state in external
data stores, which significantly increases the latencies until
events are visible to analytical queries. Proprietary solu-
tions have been created to meet data freshness constraints.
These solutions are expensive, error-prone, and difficult to
maintain. Main-memory database systems, such as HyPer,
achieve extremely low query response times while maintain-
ing high update rates, which makes them well-suited for
analytical streaming workloads. In this paper, we identify
potential extensions to database systems to match the per-
formance and usability of streaming systems.

CCS Concepts

•Information systems → Stream management;

Keywords

stream processing; main-memory database systems

1. INTRODUCTION
Gartner recently forecasted that there will be more than

20 billion connected devices in 2020, a 400% increase com-
pared to 20161. The growing popularity of Internet of Things

1http://www.gartner.com/newsroom/id/3165317

c© 2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

Partition A

Partition B

Partition C

Aggregates

A
n
a
ly

tic
a
l Q

u
e
rie

s

Streaming 

Events

Figure 1: Analytics on fast data. Streaming events
may be processed concurrently in different par-
titions, whereas analytical queries cross partition
boundaries and require a consistent state.

applications [11], including connected vehicles, cell phones,
and health monitoring devices, enable a variety of new busi-
ness use cases and applications. These applications are typ-
ically built around streaming systems that are able to ingest
and aggregate enormous amounts of events from different
data sources. Given the spike of interest in building such
applications, it is not surprising that dedicated stream pro-
cessing systems, like Apache Storm2, Apache Spark Stream-
ing3, or Apache Flink4, are receiving significant attention
not only in the database but also in the data science and in
the open-source community.

To better understand the different types of workloads that
these systems need to handle, we will walk through different
ways of processing sensor readings (events) of connected ve-
hicles that contain information about street conditions such
as icy road segments.

First, a streaming system could warn vehicles about icy
road segments based on the information of single events. In
that case, the streaming system does not need to maintain
state. We refer to such workloads as stateless streaming.
Second, a system could process the aggregated informa-

tion of multiple events to decide if vehicles should be warned.
Such an implementation requires the system to maintain a
processing state, which introduces new challenges such as
consistency and durability. We call this kind of workloads
stateful streaming.

2http://storm.apache.org/
3http://spark.apache.org/streaming/
4http://flink.apache.org/



Third, a streaming system allows users to perform analyt-
ical queries on the entire set of aggregates (the conditions
of all road segments across the city) to find the most crit-
ical segments. We refer to such workloads as analytics on

fast data. These workloads are particularly challenging for
a streaming system since it needs to perform computations
across multiple partitions in a consistent manner to answer
analytical queries (cf., Figure 1). In fact, without modifica-
tions, none of the streaming systems mentioned above can
handle this use case.

One idea to mitigate this problem is to make use of the fact
that these systems periodically flush their state to durable
storage (e.g., HDFS) to address fault tolerance. This means
that the system state becomes queryable for an analytical
engine like Apache Spark5. However, the delay that this
design introduces prohibits analytical queries to run on the
most recent state, which is required by use cases like the one
above.

Another example is the Huawei-AIM telecommunication
workload described in [2]. In this use case, events repre-
sent sales and marketing information generated by phone
calls. On the one hand, the application needs to maintain a
huge set of aggregates per customer in order to trigger alerts
for this particular customer (a stateful streaming workload).
On the other hand, maintenance specialists might query the
overall system state to localize sources for network failures
or business analysts might run analytics to gather insights
and propose new offers in real time (analytics on fast data).

Again, using an off-the-shelf stream processor does not
solve the case described in [2] because it cannot handle
the real-time analytics. There are, however, state-of-the-
art main-memory database systems (MMDBs) dedicated to
handle mixed OLTP and OLAP workloads, such as HyPer [7]
and Tell6, which seem promising because stream processing
could also be seen as a particular class of OLTP workloads.
These systems feature advanced query optimizers, compile
queries to native code, and can thus achieve extremely low
response times for complex analytical queries. Using efficient
snapshotting mechanisms, such as copy-on-write, MVCC, or
differential updates [7, 15, 8], these systems are able to sus-
tain high transaction throughput rates in parallel to analyt-
ical query processing making them well-suited for workloads
where analytical queries need to consider recently ingested
data.

Despite all these advantages, it seems that data engi-
neers are still reluctant to use MMDBs for stream process-
ing. They either build their own solutions on top of mod-
ern streaming systems (e.g., Apache Flink) or hand-craft
systems from scratch that are specifically tuned for partic-
ular workloads (e.g., AIM [2]). One reason that MMDBs
are not widely used for streaming workloads is that they
lack out-of-the-box streaming functionality, such as window
functions, and adding this functionality (e.g., through stored
procedures or user-defined functions) results in additional
engineering. If MMDBs would offer a better support for
streaming workloads (e.g., streaming extensions for SQL as
proposed in StreamSQL [16]), they would be preferable over
hand-crafted systems, which are also costly to maintain.

In this Experiments and Analyses paper, we thoroughly
evaluate the usability and performance of MMDBs, modern

5http://spark.apache.org/
6http://www.tell-project.org/

streaming systems, and AIM, a hand-crafted system, using
the Huawei-AIM workload [2]. Based on the evaluation re-
sults, we answer the question how off-the-shelf MMDBs can
be extended to sufficiently satisfy the requirements of ana-
lytics on fast data. We identify a set of modifications that,
if properly applied to the off-the-shelf MMDBs, allow these
systems to address the needs of analytics on fast data.

Our contributions include:

• A rich survey of various MMDBs, modern streaming
systems, and a hand-crafted system specifically de-
signed to address the Huawei-AIM workload

• A thorough usability and performance evaluation in-
cluding at least one representative of each of these
classes of systems

• A discussion of how MMDBs can be extended to match
the performance and usability of modern streaming
systems

The remainder of this paper is structured as follows: Sec-
tion 2 summarizes a broad variety of existing systems and
Section 3 revisits the Huawei-AIM workload and describes
how it can be implemented with these systems. Section 4
evaluates the performance of representatives of each kind of
system with respect to this workload. Section 5 enumerates
ideas regarding how to bridge the performance and usability
gap between MMDBs and modern streaming systems and is
followed by the conclusions to our evaluation presented in
Section 6.

2. APPROACHES
There are numerous systems that can be used to build

stream processing pipelines, including near real-time data
warehousing solutions like Mesa [6] and in-memory incre-
mental analytical engines like Trill [4]. S-Store [12] is an
approach to integrating stream processing into an OLTP
engine. Since addressing all of these systems is beyond the
scope of this paper, we will focus on representative MMDBs,
popular streaming systems from the open-source domain,
and AIM [2], a hand-crafted highly-optimized solution.

2.1 Main-Memory Database Systems
There are multiple MMDBs that can handle analytics on

fast data or more generally hybrid transactional/analytical
processing (HTAP) workloads. In HTAP, transactions are
usually more complex (e.g., TPC-C transactions) than the
single-row transactions studied in this work.

2.1.1 HyPer

HyPer7 is a MMDB that achieves an outstanding perfor-
mance for both OLTP and OLAP workloads, even when
they operate simultaneously on the same database. HyPer
uses two different snapshotting mechanisms to avoid expen-
sive synchronization. By leveraging the copy-on-write fea-
ture of the MMU, the fork mechanism [7] efficiently cre-
ates consistent copies of the database to enable analytical
queries to run without interruptions. The second snapshot-
ting mechanism [15] is based on multi version concurrency

7When saying HyPer, we are referring to the research version
of HyPer developed at the Technical University of Munich.



control (MVCC ) and isolates transactions by versioning in-
dividual attributes. Currently, HyPer does not yet imple-
ment physical MVCC meaning that transactions do not run
simultaneously with analytical queries but are interleaved.
HyPer further features data-centric LLVM code generation
with just-in-time compilation. Finally, HyPer has an ad-
vanced dynamic programming-based optimizer including the
ability to unnest arbitrary queries.

2.1.2 MemSQL

MemSQL8 is a MMDB that uses LLVM for code gener-
ation. In-memory data is organized row wise while on-disk
data is organized column wise. MemSQL currently does not
support stored procedures, thus making it difficult to im-
plement stream processing workloads requiring a complex
logic for updating state. To implement such a workload
in MemSQL, one needs to implement the update logic ex-
ternally, leading to costly round trips between the appli-
cation and the database. Another alternative to implement
such workloads in MemSQL is to use MemSQL Streamliner9,
which offers a connector between Spark (Streaming) and the
relational database. Streaming results from Spark Stream-
ing can be materialized into MemSQL for further investiga-
tion. The main drawback of this solution is that the two sys-
tems remain separated causing higher than necessary laten-
cies. Further, streams cannot be joined with regular tables
residing in MemSQL without materializing and transferring
them to the relational database.

2.1.3 Tell

Tell is a distributed shared-data MMDB that supports
OLTP and OLAP in parallel and is developed at the Sys-
tems Group at ETH Zurich. The implementation of Tell
is fundamentally different from that of other systems pre-
sented in this paper as it separates the computation from
the storage layer in such a way that both layers can scale
out individually [10].

The storage layer, TellStore, is a versioned key-value store
with additional support for fast scans and different storage
layout options, such as RowStore and ColumnMap. Column-

Map, the preferred layout for HTAP workloads, was created
as part of Analytics in Motion (AIM) [2] (cf., Section 2.3)
and is a modified Partition Attributes Across (PAX) [1] ap-
proach that optimizes cache locality by storing data column-
wise in blocks of cache size. This optimization allows Colum-

nMap to support fast scans and, at the same time, reason-
ably fast record lookups and updates. TellStore employs
the shared scan technique, which allows incoming scan re-
quests to be batched and processed all at once by a single
thread. The shared scan can be parallelized efficiently by
partitioning the data and using a dedicated scan thread for
each of these partitions in parallel [18]. Isolation is guar-
anteed using a combination of differential updates [8] and
MVCC. Updates are put into a delta data structure, which
gets periodically merged with the main data structure that
serves analytical queries. This approach is also used in SAP
HANA [5].

Tell’s compute layer offers two processing APIs: TellDB
(C++) for general-purpose transactions and TellJava (Java)
for read-only analytics. TellJava can be further integrated

8http://www.memsql.com/
9http://blog.memsql.com/spark-streamliner/

into distributed processing frameworks, including Apache
Spark and Presto.

2.2 Modern Streaming Systems
In addition to MMDBs, there are dedicated streaming sys-

tems allowing for the implementation of streaming pipelines.
These systems provide out-of-the-box functionality, includ-
ing a rich set of operators to help data engineers to address
the specific demands of streaming use cases.

2.2.1 Apache Samza

Apache Samza10 is a distributed framework for contin-
uous real-time data processing that is lightweight, elastic,
and fault-tolerant. Samza uses Apache Kafka11 (a durable
publish-subscribe-based message passing system that allows
replaying messages) for real-time feeds and produces out-
put feeds for Kafka to consume. For distributed scheduling,
fault tolerance, and resource allocation, Samza depends on
Apache YARN and on Kafka. Samza employs a checkpoint-
ing mechanism to provide at-least-once guarantees. It cre-
ates checkpoints at predefined time intervals and in case of a
job failure, it replays messages from the last checkpoint. A
drawback of Samza is that it does not support exactly-once
semantics. A message might be processed twice after a job
failure, which can lead to non-exact results. That effect can
be minimized by using shorter checkpoint time intervals.

2.2.2 Apache Flink

Apache Flink [3] is a combined batch and streaming pro-
cessing system that supports exactly-once semantics. Flink
follows a tuple-at-a-time approach, providing low latency.
Using asynchronous checkpointing, Flink is able to decou-
ple its fault-tolerance mechanism from the tuple process-
ing. The processing continues while Flink periodically cre-
ates snapshots of the operator states and the in-flight tuples.
Flink can achieve superior throughput compared to Apache
Storm (cf., Section 2.2.4). In contrast to the other streaming
systems, Flink allows for event time semantics. Flink allows
the extraction of the actual event timestamp (i.e., the time
when the event was originally captured) when an event ar-
rives at the streaming engine to assign it to its appropriate
window. A drawback of Flink is that current versions only
allow maintaining state on an operator level. However, there
is a pull request for a queryable state12 to be released with
Flink 1.2.0. The idea is to maintain an operator-independent
state within Flink and expose it to external queries. Inter-
nally, the state is partitioned and guarantees fault tolerance
(i.e., exactly-once semantics). A restriction of this solution
is that it is only a key-value state supporting only point
lookups. More complex queries, including full table scans,
are not possible.

As a workaround, one can implement a custom operator
that holds both the state and the logic for the correspond-
ing analytical queries. The drawback of this approach is
that the whole state and query logic has to be implemented
manually. Further, this approach does not support concur-
rent stream and query processing since analytical queries
can only be ingested through the stream processing pipeline
itself resulting in an interleaved execution.

10http://samza.apache.org/
11https://kafka.apache.org/
12https://issues.apache.org/jira/browse/FLINK-3779



2.2.3 Apache Spark Streaming

Apache Spark Streaming [19] is the streaming extension
to the cluster computing platform Apache Spark. Spark
Streaming organizes incoming streaming tuples into micro-

batches that are being processed atomically thus optimizing
for throughput. This approach allows the use of the same
programming model for batch and stream processing. Spark
Streaming supports exactly-once semantics.

2.2.4 Apache Storm

Apache Storm [17] is a widely used stream processing sys-
tem that does not guarantee state consistency and follows
a tuple-at-a-time approach, thus favoring low latency over
throughput. Storm implements at-least-once semantics by
keeping upstream backups of data that are being replayed if
no acknowledgements have been received from downstream
nodes. Trident13 extends Storm with exactly-once semantics
and allows running queries on consistent state.

2.3 AIM
In collaboration with Huawei, researchers of the Systems

Group at ETH Zurich designed the AIM system to address
the specific characteristics of a telecommunications work-
load. AIM is a research prototype that allows efficient ag-
gregation of high-throughput data streams. It was specif-
ically designed to address the Huawei-AIM workload that
we use for evaluation purposes in this paper (cf., Section 3).
Due to its hand-optimized nature, AIM achieves an out-
standing performance on that workload and therefore serves
as a baseline for our experiments. AIM has a three-tier
architecture consisting of storage, event stream processing
(ESP), and real-time analytics (RTA) nodes (or threads if
deployed in a standalone setting). RTA nodes push analyt-
ical queries down to the storage nodes, merge the partial
results, and finally deliver the results to the client. ESP
nodes process the incoming event stream, evaluate alert trig-
gers, and update corresponding records by sending Get and
Put requests to the storage nodes. The storage nodes store
horizontally-partitioned data in a ColumnMap layout and
employ shared scans as described in Section 2.1.3. AIM can
also be deployed standalone, which eliminates network costs
and therefore tests the pure read, write, and scan perfor-
mance of the server.

2.4 Summary
A comparison of different aspects of stream processing

approaches is presented in Table 1. These aspects include:

Semantics Streaming engines make different guarantees re-
garding how messages (i.e., events) are being processed.
A streaming engine only ensures completely correct re-
sults when providing exactly-once guarantees. Some
engines optimize for low latency and thus often can-
not provide exactly-once guarantees as this would re-
quire them to implement transactions, which are ex-
pensive in a distributed setting. Therefore, streaming
engines often fall back to at-least-once semantics (i.e.,
a message will be resent until it is processed at least
once), which are good enough for many applications.
Many stream processing engines require a durable data
source for exactly-once guarantees because they only
persist their processing state at certain points of time

13http://storm.apache.org/documentation/Trident-state

(often called checkpoints). In case of a failure, mes-
sages need to be replayed from the last checkpoint. In
contrast, database systems achieve durability through
the use of redo logs and thus only need to replay mes-
sages sent during the time the database system was
down. The third processing guarantee is at-most-once.
In an at-most-once setting, messages might get lost but
are never processed twice or more often. Few systems
implement this approach since loosing data is an un-
desirable property for most applications.

Durability Durability is closely related to the semantics
offered by stream processing systems. While some sys-
tems require a durable data source to achieve durabil-
ity, others provide durability out-of-the-box.

Latency Especially in real-time scenarios, low latencies are
crucial to deliver valuable results. As stated above,
latency often depends on the processing guarantee of-
fered by a system. MMDBs that often run on a single
machine or are optimized for low-latency networks can
yield low latencies while providing exactly-once pro-
cessing guarantees.

Computation model There are two computation models:
tuple-at-a-time andmicro-batch. The natural approach
is to process streams continuously. However, streams
can also be batched and processed as small chunks of
data. Spark Streaming follows this approach allowing
it to achieve high throughput rates. However, follow-
ing a tuple-at-a-time-based approach does not neces-
sarily lead to lower throughput since the computation
model can be independent from the checkpointing in-
terval. For instance, Flink follows a tuple-at-a-time-
based approach combined with a batch-based check-
pointing mechanism thus optimizing for both latency
and throughput. MMDBs usually treat stream events
as transactions, which might also be batched for better
performance (e.g., Tell processes 100 events within a
single transaction).

Throughput Another important aspect in stream process-
ing is throughput. Particularly when costs matter,
higher throughput helps to reduce the number of re-
quired resources. Due to the low costs to process
single-row transactions (updating aggregates of sin-
gle entities), throughput mainly depends on the em-
ployed fault-tolerance mechanism and whether a sys-
tem batches transactions. Throughput increases with
longer checkpointing intervals.

State management For mixed OLTP and OLAP work-
loads, the state updated by the OLTP subsystem needs
to be exposed to the OLAP subsystem. Traditional
streaming engines, such as Apache Storm, do not allow
maintaining state. They are only designed to process
and transform an input into an output data stream
preventing writing stateful stream processing applica-
tions (e.g., aggregations over windows). Trident ex-
tends Storm with state management capabilities. Flink
only maintains states on an operator basis and cur-
rently does not support global states that can be ac-
cessed by analytical queries. Database systems, on the
other hand, can persist streaming results in temporary



MMDBs Modern Streaming Systems

Aspect HyPer MemSQL Tell Samza Flink Spark

Stream-

ing

Storm AIM

Semantics Exactly-once Exactly-once Exactly-once At-least-once Exactly-once Exactly-once Exactly-once Exactly-once

Durability Yes Yes No With durable
data source

With durable
data source

With durable
data source

With durable
data source

No

Latency Low Low Low High (writes
messages to
disk)

Low Medium
(depends on
batch size)

Low Low

Computation
model

Tuple-at-a-
time

Tuple-at-a-
time

Tuple-at-a-
time

Tuple-at-a-
time

Tuple-at-a-
time

Micro-batch Micro-batch Tuple-at-a-
time

Throughput High High High High High Medium
(depends on
batch size)

Low High

State man-
agement

Yes Yes Yes Yes (durable
K/V store)

Yes Yes (writes
into storage)

Yes Yes

Parallel
read/write
access to
state

Copy on
write, MVCC

No Differential
updates,
MVCC

No No No No Differential
updates

Implementation
languages

C++, LLVM C++, LLVM C++, LLVM Java, Scala Java Java, Scala Java, Clojure C++

User-facing
languages

SQL SQL C++,
Java, Scala
(through
Spark
shell), SQL
(through
Presto shell)

Java, Scala Java, Scala Java, Scala,
Python,
SparkSQL

Any (through
Apache
Thrift)

C++

Own memory
management

Yes Yes Yes (w/ GC) No Yes Yes No Yes

Window sup-
port

Using stored
procedures

Only manu-
ally

Only manu-
ally

Very basic Very power-
ful

Basic Basic Using tem-
plate code

Table 1: Comparison of different stream processing approaches

tables allowing OLAP queries to access them as if they
were regular database tables.

Parallel read/write access to state As mentioned ear-
lier, Trident extends Storm with state management
functionalities; however, it does not allow analytical
queries and updates to access state in parallel. In-
stead, they have to be interleaved to ensure a consis-
tent view of the state. In contrast, modern MMDBs
can efficiently expose their current state to analytical
queries through the use of snapshotting mechanisms,
such as copy-on-write, MVCC, or differential updates.

Implementation languages Most of the streaming sys-
tems are written in a JVM-based language, whereas
MMDBs are usually implemented in C or C++. The
trend is to compile queries to native code. HyPer, Tell,
and MemSQL use LLVM as a compiler backend.

User-facing languages The Apache systems support pri-
marily JVM-based languages while the MMDBs all
support SQL and, in the case of Tell, additional lan-
guages through its Spark and Presto integration.

Own memory management Whether a system employs
its own memory management or fully relies on the
memory management of the JVM. Spark Streaming
and Flink are based on the JVM but still employ their
own memory management to have a better control over
garbage collection cycles.

Window support In streaming applications, aggregations
are usually computed on a window basis. Two ba-
sic window types are sliding and tumbling. Sliding
windows are contiguous time or count-based intervals,
such as last 24 hours or last 10,000 events. Tumbling
windows are non-overlapping time or count-based in-
tervals, such as today or every 10,000 events. All of the
analyzed streaming engines support these two kinds of
windows. In particular, Flink offers extensive function-
ality to specify windows, supporting custom window
assigners, triggers, and evictors. AIM supports tum-
bling windows for specific time intervals and the stan-
dard aggregation functions through templated code.
The window definitions are loaded at startup and can-
not be changed afterwards. The analyzed MMDBs
have no natural window support. However, in the case
of HyPer, windows can be manually implemented us-
ing stored procedures.

3. WORKLOAD
AIM was motivated by a telecommunication workload,

which we will refer to as Huawei-AIM use case [2]. We chose
this workload as it is well-defined and represents the work-
load class of analytics on fast data.

3.1 Description
The Huawei-AIM use case requires events, more specifi-

cally call records, to be aggregated and made available to
analytical queries. The system’s state, which AIM calls the



international calls ...

subscriber ID
today ... ...

count
duration ... ... ...

sum min max ... ... ...

Table 2: Schema snippet of the Analytics Matrix

Analytics Matrix

10M rows

546 columns

10,000 events/s

Event Stream Analytical Queries

Query 1

Query 4

Query 3

Query 2

Query 7

Query 5

Query 6

subscriber ID, no of calls, total duration, ...

1, 17, 42, ...

2, 815, 4771, ...

...Each event contains:

subscriber ID, duration, ...

Figure 2: The AIM-Huawei workload

Analytics Matrix, is a materialized view on a large number
of aggregates for each individual subscriber. There is an ag-
gregate for each combination of aggregation function (min,
max, sum), aggregation window (this day, this week, ...) and
several event attributes as shown in Table 2, which shows a
small part of the conceptual schema of an Analytics Matrix.
For instance, there is an aggregate for the shortest duration
of an international phone call today (attribute min in Ta-
ble 2). The number of such aggregates (which defines the
number of columns of the Analytics Matrix ) is a workload
parameter with default value 546, which we use in our ex-
periments. The Analytics Matrix also contains foreign keys
to dimension tables. Since these dimension tables are very
small, we omit them in our experiments.

The use case requires two things to be done in real time:
(a) update Analytics Matrix and (b) run analytical queries
on the current state of the Analytics Matrix. (a) is referred
to as Event Stream Processing (ESP) and (b) as Real-Time
Analytics (RTA). When an event arrives in ESP, the corre-
sponding record in the Analytics Matrix has to be atomically
updated. RTA, on the other hand, is used to answer busi-
ness intelligence questions. RTA queries are continuously
being issued by one or multiple clients and are evaluated on
a consistent state of the Analytics Matrix. This consistent
state (or snapshot) is not allowed to be older than a certain
bound tfresh, which is a service level objective (SLO) of the
Huawei-AIM benchmark and defaults to one second. Table 3
shows the seven queries from the original benchmark [2].
Additionally, users may issue ad-hoc queries. Since ad-hoc
queries are not available upfront and can involve any num-
ber of attributes, it is impractical for a stream processing
system to create specialized index structures.

Figure 2 summarizes the workload components. Events
are ingested at a specific rate fESP , which will usually be
10,000 events per second in our experiments. Each event
consists of a subscriber ID and call-dependent details, such
as the call’s duration, cost, and type (i.e., local or interna-
tional). The Analytics Matrix is the aggregated state on the
call records as described earlier and consists of 546 columns
and 10 million rows, each representing the state of one sub-
scriber. Depending on the event details, the corresponding
subset of columns in the Analytics Matrix is updated for the
particular subscriber. These updates are made available to
analytical queries within tfresh.

Query 1:
SELECT AVG (total duration this week)
FROM AnalyticsMatrix
WHERE number of local calls this week > α;

Query 2:
SELECT MAX (most expensive call this week)
FROM AnalyticsMatrix
WHERE total number of calls this week > β;

Query 3:
SELECT (SUM (total cost this week)) /

(SUM (total duration this week)) as cost ratio
FROM AnalyticsMatrix
GROUP BY number of calls this week
LIMIT 100;

Query 4:
SELECT city, AVG(number of local calls this week),

SUM(total duration of local calls this week)
FROM AnalyticsMatrix, RegionInfo
WHERE number of local calls this week > γ

AND total duration of local calls this week > δ

AND AnalyticsMatrix.zip = RegionInfo.zip
GROUP BY city;

Query 5:
SELECT region,

SUM (total cost of local calls this week) as local,
SUM (total cost of long distance calls this week)
as long distance

FROM AnalyticsMatrix a, SubscriptionType t,
Category c, RegionInfo r
WHERE t.type = t AND c.category = cat,
AND a.subscription type = t.id AND a.category = c.id,
AND a.zip = r.zip

GROUP BY region;

Query 6:
report the entity-ids of the records with the longest call this day and

this week for local and long distance calls for a specific country cty

Query 7:
SELECT (SUM (total cost this week)) /

(SUM (total duration this week))
FROM AnalyticsMatrix
WHERE CellValueType = v;

Table 3: RTA queries 1 to 7, α ∈ [0,2], β ∈ [2,5], γ

∈ [2,10], δ ∈ [20,150], t ∈ SubscriptionTypes, cat ∈

Categories, cty ∈ Countries, v ∈ CellValueTypes

3.2 Implementations
We implemented the workload using at least one repre-

sentative of each of the three categories: MMDBs, modern
streaming systems, and hand-crafted systems. We chose
Flink as a representative modern streaming system since
it features a continuous processing model combined with
a batch-based fault-tolerance mechanism allowing for low
latency under high throughput conditions. MemSQL cur-
rently does not support stored procedures14. Without this
feature, we were not able to implement the event process-
ing part of the workload in an efficient way and therefore
decided not to further evaluate MemSQL.

3.2.1 HyPer

Our workload implementation in HyPer was based on the
work of [2]. ESP is performed using a stored procedure that
updates aggregates stored in the Analytics Matrix, which is
implemented as a regular database table. RTA query pro-
cessing is implemented using SQL queries on that table.

When HyPer was first evaluated using the Huawei-AIM
benchmark in [2], HyPer was configured to use a copy-on-

write-based snapshotting technique that forked a child from
the main OLTP process at a specific time interval. This en-
ables RTA queries to be executed on a consistent snapshot of
the Analytics Matrix. Since the table representing the An-

alytics Matrix can be as large as 50GBs, forking a child of
the OLTP process (essentially a copy of its page table) may
take up to a hundred milliseconds. Additionally, our work-
load updates the records of randomly selected subscribers at
a rate of 10,000 events/s, which may impact performance as
the copy-on-write mechanism copies updated pages to main-

14http://docs.memsql.com/docs/mysql-features-
unsupported-in-memsql



tain consistent snapshots for RTA queries. HyPer currently
does not implement physical MVCC 15, which would lead
to better results than a copy-on-write-based approach. The
evaluated implementation interleaves the execution of mul-
tiple analytical queries thereby hiding memory latencies and
single-threaded phases (e.g., result materialization). Writes,
however, are never executed at the same time than analyti-
cal queries.

HyPer implements the PostgreSQL wire protocol allow-
ing one to use any PostgreSQL client. In our experiments,
we used PostgreSQL’s C++ library (pqxx) to communicate
between clients and HyPer (using TCP over UNIX domain
sockets). Since HyPer currently does not implement batched
transactions, HyPer’s event processing throughput would be
purely limited by network round trips between subsequent
write requests, context switches on the server to receive
incoming requests, and deserialization costs. To simulate
batch processing, we decided to additionally generate the
events within HyPer and only process these. In other words,
instead of actually transferring the batch of events from the
client to the server, we send a request to generate and pro-
cess a specified number of events.

3.2.2 Tell

For Tell, we used the Huawei-AIM benchmark implemen-
tation from the Tell GitHub project16. We configured Tell-
Store to use the ColumnMap layout with a total of 84GB
of memory, more than twice the memory that HyPer uses.
With less memory, TellStore regularly ran out of memory, es-
pecially with multiple storage threads. To minimize NUMA
effects, we configured Tell to run the storage layer (Tell-
Store) on NUMA node 0 and the compute layer (RTA and
ESP server-side threads) on node 1. RTA and ESP clients
were also run on node 1. With this configuration, Tell
achieved significantly better numbers than with the non-
NUMA-aware configuration.

It is worth mentioning that Tell, as opposed to AIM, can-
not be deployed in standalone mode. Whereas in AIM,
Flink, and HyPer events are generated internally, Tell needs
a client that generates events and sends them to the server
(using UDP over Ethernet). Additionally, the server needs
to send read and write requests to the storage (using RDMA
over InfiniBand). Compared to all other implementations
presented in this section, this makes ESP much more ex-
pensive as the overheads of network costs, context switching,
and deserialization cost are paid twice (cf., Section 3.2.1).
These extra costs should be be taken into account when
looking at the performance results.

As Tell is a layered system, we have to carefully allocate
threads to layers. In the compute layer, we have to allo-
cate a specific number of ESP and RTA processing threads,
whereas in the storage layer, we have to allocate the right
number of scan threads (responsible for analytical query pro-
cessing). The storage layer also runs one thread that inte-
grates updates into the next snapshot for analytics and one
thread for garbage collection. Microbenchmarks revealed
the optimal thread allocation strategy for each workload as
shown in Table 4. In general, Tell has a lot of different pa-
rameters most of which relate to memory management; and
fine-tuning these parameters to get the best performance
was a tedious task.

15[15] explains how versioned positions allow for fast scans.
16https://github.com/tellproject/aim-benchmark

Compute Storage

Workload ESP RTA scan update GC Total

read/write 1 n n 1 1 2n+ 2∗

read-only 0 n n 0 0 2n

write-only n 0 0 1 0 n+ 1

Table 4: Thread allocation strategy for different
workloads

3.2.3 AIM

Since the AIM system was specifically designed to ad-
dress the AIM-Huawei workload, we assumed that it would
achieve the best performance on the full workload and thus
we used it as a baseline for our experiments. We used
the same version used in [2] but in standalone mode where
client and server communicate through shared memory. For
the overall and the read-only experiments, we increased the
number of RTA threads (and used one ESP thread), whereas
for the write-only experiments, we increased the number of
ESP threads.

3.2.4 Flink

Currently, Flink does not support exposing its internal
state to external analytical queries. There is, however, a
pull request for a partitioned key-value store that will be
queryable. However, this queryable state only supports point
lookups and thus cannot be used to implement the AIM
workload. We implemented a custom operator that supports
table scans to meet the requirements of the AIM workload.
We experimented with a row and a column store layout for
storing the state. Since the AIM workload is mostly analyt-
ical, we opted for the column store layout.

Similar to HyPer, we generated the events internally in
Flink. We also implemented a version that uses Kafka for
event ingestion, which will not be included in the results,
as we found no significant difference in performance com-
pared to the version that generates the events internally.
In production, Kafka, or any other durable data source, is
preferable to ensure full fault tolerance.

Since we want to make the most recent state available
to analytical queries, windows need to be computed on an
event basis. As Flink’s built-in operators are not optimized
for these continuous window computations, we chose to man-
ually implement the window logic, which yielded better re-
sults. We did not enable Flink’s checkpointing mechanism
since the processing state of the Huawei-AIM workload can
be as large as 50GBs. Persisting a state of this size would
lead to a significant performance penalty.

Flink provides many built-in functionalities that seem suit-
able for our workload including windowed streams support-
ing various aggregation functions (e.g., min, max, and sum).
We tried to make use of the provided functionalities. How-
ever, in the studied version of Flink, combining multiple
aggregation functions that produce only one single output
stream is not yet supported. For this reason, we imple-
mented a custom aggregation operator.

∗Since GC is only running from time to time and the update
thread is also mostly idling for 10,000 events per second,
both threads have an average CPU usage clearly below 50%.
This is why we count them as one.



CoFlatMap

State

Event Stream Analytical Queries

RTA Client

event query id

update state run query

query id

query result

Figure 3: Hybrid processing in Flink. A CoFlatMap
operator interleaves events with analytical queries.

All aggregations in the AIM workload are windowed. We
could express this behavior using Flink’s built-in window
operators. For only one window type, this works well. How-
ever, with two or more different window types, the different
windows would need to be merged into one consistent state
across all windows. As this is not a straightforward opera-
tion in Flink, we decided to implement windows ourselves.

Another challenge was to run the analytical queries on
the state maintained by the event processing pipeline. Flink
does not provide a globally accessible state that can be used
in such cases. States are only maintained at an operator
level and cannot be accessed from outside. We solved this
problem by processing both the event stream and the an-
alytical queries in the same CoFlatMap operator as shown
in Figure 3. Both streams are processed interleaved using
two individual FlatMap functions that both work on the
same shared state. This works as both functions are part
of the same operator. Our implementation interleaves the
two different streams on a partition basis. Since Flink fol-
lows the embarrassingly parallel paradigm, it is not designed
to synchronize access across partitions. As described in [2],
the AIM-Huawei workload does not require such a global
synchronization since events are only ordered on an entity
basis.

A powerful feature of Flink is its partitioning. Flink au-
tomatically partitions elements of a stream by their key and
assigns the partitions to a parallel instance of each operator.
Each instance of our CoFlatMap operator only receives the
events for its partition and thereby maintains a part of the
total state. The analytical queries, however, should run on
the whole state. Therefore, we broadcast the queries to each
CoFlatMap operator instance and run them on the individ-
ual partitions. The resulting partial results are merged in a
subsequent operator.

In our experiments, we used Kafka to send queries since
it integrates well with Flink and ensures that no queries are
lost. It would also be possible to ingest the queries using a
TCP client or other more sophisticated handwritten clients.

4. PERFORMANCE EVALUATION
We begin with a performance evaluation using the com-

plete Huawei-AIM workload as described in Section 3. We

System Version

HyPer Sep 12, 2016
Tell 0.2
AIM Same version as used in [2]
Flink 1.1-Snapshot

Table 5: Evaluated systems

drill down into the different aspects of the workload, includ-
ing updates and real-time analytics. We then investigate the
performance impact of the number of clients and the number
of maintained aggregates.

We did not evaluate how the systems scale out to multi-
ple machines since the evaluated version of HyPer is stan-
dalone. In future work, we plan to extend HyPer with dis-
tributed event processing. However, the boundary between
distributed systems and single-machine many-core systems
with non-uniform memory access is blurry. In fact, as shown
in the following section, even on our single two-socket ma-
chine the performance dropped when scaling beyond a single
NUMA node.

4.1 Configuration
We evaluated the different systems (cf., Table 5) on an

Ubuntu 15.10 machine with an Intel Xeon E5-2660 v2 CPU
(2.20GHz, 3.00GHz maximum turbo boost) and 256GB
DDR3 RAM. The machine has two NUMA sockets with 10
physical cores (20 hyperthreads) each, resulting in a total of
20 physical cores (40 hyperthreads). The sockets communi-
cate using a high-speed QPI interconnect (16GB/s).

We placed the clients on the same machine as the server
and generated events and queries by one client thread each
(except for Tell where we used eight RTA client threads).
Setting the total number of threads17 was enough to run
HyPer and Flink out-of-the-box. Conversely, Tell and AIM
required more tedious fine-tuning and server threads were
allocated as explained in Sections 3.2.2 and 3.2.3. As one can
see from these allocation schemes, some workloads require
more than one thread even in the most basic setting, which
is why the measurements for AIM and Tell do not typically
start at one thread and may have gaps.

4.2 Overall Performance
Figure 4 illustrates the query throughput when running

the full workload, which consists of 10M subscribers, 10,000
events per second, and the seven analytical queries (cf., Ta-
ble 3) where each of them is executed with equal probability.
Further, daily and hourly windows are maintained leading
to a total of 546 aggregates. AIM achieved the best per-
formance. With two threads, it had a throughput of 14.8
queries/s and its best throughput, with eight threads, was
145 queries/s. The reason why AIM achieves its best per-
formance at eight (and not at ten) threads is a NUMA ef-
fect: Since AIM statically pins threads to cores and allocates
memory locally whenever possible, the total number of client
and threads (2 + 8 = 10) precisely fits on NUMA node 0.
Hence, there is no communication to a remote memory re-
gion as it is the case for nine and ten threads. The spike at
four threads probably relates to non-uniform communica-

17Unless otherwise noted, we are always referring to the
server-side threads.



●

●

●

●

●
●

●

●

●

0

50

100

150

1 2 3 4 5 6 7 8 9 10

number of threads

th
ro

u
g
h
p
u
t 
in

 q
u
e
ri

e
s
/s

● AIM Flink HyPer Tell

Figure 4: Analytical query throughput for 10M sub-
scribers at 10,000 events/s

●

●
●

●

●

●

●

●

●

●

0

50

100

150

1 2 3 4 5 6 7 8 9 10

number of threads

th
ro

u
g
h
p
u
t 
in

 q
u
e
ri

e
s
/s

● AIM Flink HyPer Tell

Figure 5: Analytical query throughput for 10M sub-
scribers

tion paths between the cores on NUMA node 0. The spikes
observed here are reproducable, and are, as we will see, also
present in other workloads. Flink matches the performance
of AIM for two threads and scales up to 90.5 queries/s using
ten threads. HyPer achieved a throughput of 14.3 and 70.0
queries/s with two and nine threads, respectively. HyPer’s
throughput is lower than AIM’s since it interleaves analyti-
cal queries with writes (i.e., writes block reads) while AIM
processes them in parallel. With four threads, Tell achieved
a query throughput of 8.90 queries/s and 27.1 queries/s with
ten threads.

4.3 Read Performance
Figure 5 shows the analytical query throughput for the

different systems with an increasing number of threads with-
out concurrent events. With one thread, HyPer processed
19.4 queries/s while AIM sustained a throughput of 33.3
queries/s. As we increased the number of threads, Hy-
Per sometimes outperformed AIM and its throughput in-
creased linearly while AIM showed the same spikes as be-
fore18. HyPer’s maximum throughput was 136 queries/s
with ten threads compared to 164 queries/s for AIM with
seven threads. Flink’s throughput was 13.1 queries/s using
one thread and gradually increased to 105.9 queries/s with

18AIM cannot be configured with zero ESP threads, which is
why there is an additional idle ESP thread that we do not
account for, but which nevertheless occupies its CPU. This
is why the spike is at seven threads this time.

●

●

●

●

●

●
●

● ●

●

0

100

200

300

1 2 3 4 5 6 7 8 9 10

number of threads

th
ro

u
g
h
p
u
t 
in

 K
 e

ve
n
ts

/s

● AIM Flink HyPer Tell

Figure 6: Event processing throughput with an in-
creasing number of event processing threads

ten threads. With two threads, Tell sustained a throughput
of 8.68 queries/s while its maximum throughput was 32.1
queries/s using ten threads.

4.4 Write Performance
Figure 6 shows the event processing throughput of the

different systems with an increasing number of event pro-
cessing threads. This time, we evaluated the systems purely
on the basis of their write throughput without running any
analytical queries in parallel. Flink achieved the best write
performance by far. Using one thread, it had a throughput
of 30,100 events/s and the throughput scaled almost lin-
early to 288,000 events/s using ten threads. There are two
reasons for this: (1) Flink partitions the state depending
on the number of available processing threads. With this
strategy, it scales well since there is no cross-partition syn-
chronization involved. (2) Flink does not have any overhead
introduced by snapshotting mechanisms or durability guar-
antees. AIM processed 23,700 events/s using one thread and
achieved a maximum throughput of 168,000 events/s using
eight threads, roughly 1.7x less than Flink. Again, we see
the NUMA effect described earlier. AIM also partitions the
state to scale its write throughput, but since its differential

update mechanism introduces an overhead, AIM did not per-
form as well as Flink. Tell was able to process up to 46,600
events/s using six threads. The reason for the performance
degradation after six threads is again a NUMA effect. All
ESP processing threads as well as threads that handle UDP
events are allocated on NUMA node 1 leading to an oversub-
scription of cores. HyPer sustained a throughput of 20,000
events/s in all cases since it only uses one single thread to
process transactions.

4.5 Query Response Times
In this experiment, we measured the response time for

each of the seven analytical queries with and without con-
current writes (10,000 events/s) using four threads. Ta-
ble 6 shows the individual query response times and the
overall average. HyPer’s performance degraded the most
when writes were added to the query processing workload.
The reason is that HyPer interleaves analytical queries with
writes. As shown in the previous section, HyPer’s write
throughput is limited to 20,000 events/s and does not scale
for multiple threads. Thus, an event throughput of 10,000
events/s blocks the query processing for about 500ms ev-



●
●

●
●

●

●
●

●

● ●

0

100

200

1 2 3 4 5 6 7 8 9 10

number of clients

th
ro

u
g
h
p
u
t 
in

 q
u
e
ri

e
s
/s

● AIM Flink HyPer Tell

Figure 7: Analytical query throughput with an in-
creasing number of clients

ery second. The query processing can only happen in the
remaining 500ms. AIM and Tell did not experience the
same performance degradation since they perform writes
and reads in parallel using the differential updates approach.
Flink’s performance does not drop much when adding 10,000
events/s as its (parallel) write throughput is so high that
the analytical queries remain almost unaffected. However,
we expect a higher performance degradation in Flink’s an-
alytical performance when increasing the number of events
per second as Flink lacks efficient snapshotting mechanisms.

4.6 Impact of Number of Clients
Figure 7 shows the analytical query throughput with an

increasing number of clients using ten server-side threads.
HyPer performed the best of all systems and achieved a max-
imum throughput of 276 queries/s with ten client threads.
HyPer’s performance improves with multiple clients since
it interleaves the execution of analytical queries (cf., Sec-
tion 3.2.1). AIM’s peak throughput was 218 queries/s with
eight client threads. The gradual increase in the through-
put shows the effect of the shared scan technique as AIM
can now batch queries from multiple clients and process
them all at once. The fact that the performance drops af-
ter eight threads shows that batching is only beneficial up
to a certain point. Flink executes analytical queries as fol-
lows: Once a worker completed its part of the query, i.e.,
processed the query on its partition of the state, the worker
can continue with the next query. The worker does not have
to wait until the other partitions have been processed and
the partial query results have been merged. For this reason,
the idle time of threads decreases for more clients and the
query throughput increases to 131 queries/s. Tell employs
the same strategy as AIM and we can see a similar gradual
increase in its throughput.

4.7 Impact of Number of Aggregates
In this experiment, we studied the impact of the number

of aggregates being maintained. We measured the overall
as well as the write performance of AIM, HyPer, and Flink
while maintaining 42 instead of the original 546 aggregates.
We did not measure Tell here since its AIM benchmark
implementation was not flexible enough to accommodate
schema changes.

Figure 8 shows the analytical query throughput for 10M
subscribers and 42 aggregates at 10,000 events/s. Again,

●

●

●

●

●

●

●

●

●

0

50

100

150

1 2 3 4 5 6 7 8 9 10

number of threads

th
ro

u
g
h
p
u
t 
in

 q
u
e
ri

e
s
/s

● AIM Flink HyPer

Figure 8: Analytical query throughput for 10M sub-
scribers and 42 aggregates at 10,000 events/s

●

●

● ●

●

●
● ● ● ●

0

1000

2000

3000

1 2 3 4 5 6 7 8 9 10

number of threads

th
ro

u
g
h
p
u
t 
in

 K
 e

ve
n
ts

/s

● AIM Flink HyPer

Figure 9: Event processing throughput for 42 aggre-
gates with an increasing number of event processing
threads

AIM achieved its best performance at eight threads (cf., Sec-
tion 4.2) whereas Flink and HyPer did not experience such
spikes. In contrast to the overall workload with 546 ag-
gregates, HyPer achieved a higher performance than Flink
throughout this experiment. The gain in HyPer’s perfor-
mance is expected since writes are now less expensive and
thus singlethreaded phases are reduced. With ten threads,
HyPer achieved a throughput of 125 queries/s (2.14x speedup
over 546 aggregates) while Flink sustained 97.4 queries/s
(1.08x).

Figure 9 shows the event processing throughput for 42
aggregates with an increasing number of event processing
threads. Note that we reduced the number of aggregates by
a factor of 13. As expected, the throughputs improved sig-
nificantly with less aggregates (cf. Section 4.4). With one
thread, AIM and HyPer achieved a throughput of 227,000
(11.4x) and 228,000 events/s (9.62x), respectively, whereas
Flink sustained 766,000 events/s (25.5x). With ten threads,
AIM and Flink reached a throughput of 1,000,000 (7.69x)
and 2,730,000 events/s (9.51x), respectively. HyPer’s perfor-
mance did not increase with more threads since it currently
does not parallelize transactions.

5. CLOSING THE GAP
We have shown that general-purpose MMDBs perform

fairly well on streaming workloads. Nevertheless, our ex-
periments indicate that there is still a gap between the per-



Read (in isolation) Overall (w/ concurrent events)

Query HyPer Tell AIM Flink HyPer Tell AIM Flink

Query 1 5.25 249 2.44 5.83 12.2 242 5.32 16.9
Query 2 7.41 241 3.91 5.10 14.3 253 4.94 8.03
Query 3 20.4 298 10.4 29.9 29.5 289 10.5 37.2
Query 4 4.05 269 2.98 3.14 12.1 281 4.67 6.97
Query 5 12.5 264 21.1 37.8 20.7 271 38.3 45.1
Query 6 33.8 505 13.8 24.4 84.1 492 54.4 33.6
Query 7 17.7 246 9.04 24.4 25.8 236 17.5 32.8
Average 14.4 296 9.10 18.7 28.4 295 19.3 25.8

Table 6: Query response times in milliseconds

formance and usability of MMDBs and modern streaming
systems, such as Flink, particularly when it comes to scal-
able event processing (cf., Section 4.4).

We propose a threefold approach to improve the overall
write performance of MMDBs: (a) improve single-threaded
write performance, (b) use all cores on a single machine,
and (c) distribute load across multiple machines. In the
following, we will describe each of these aspects in more
detail.

Event ingestion in modern streaming systems is usually
implemented using a durable data source, such as Kafka.
This allows the streaming system to neglect durability, lead-
ing to higher throughputs. Durability in these systems is
usually more coarse-grained than in MMDBs. To match
Flink’s single-threaded write performance, MMDBs would
need to offer a more coarse-grained durability level by using
durable data sources instead of employing fine-grained redo
log mechanisms.

AIM, Flink, and Tell are capable of processing events in
parallel, whereas HyPer processes transactions in a single
thread. To match their scalability, HyPer would need to
be extended with parallel single-row transactions, which are
less complicated to parallelize than full transactions. Such a
streaming-optimized transaction isolation would only ensure
that there are no conflicts on the primary key column(s).
Work on allowing concurrent write transactions in HyPer is
ongoing [9]. In Tell, for instance, batches of events are pro-
cessed within the scope of a transaction and several trans-
actions can be executed in parallel. The latter, however,
comes at the high price of maintaining multiple versions of
the data, which again reduces performance as our experi-
ments illustrate.

MMDBs also need to be able to distribute writes across
multiple machines. HyPer, for instance, could employ a
similar strategy as Flink, which partitions the event input
stream and distributes it across nodes. Towards this end,
HyPer could employ the ScyPer architecture as suggested
in [13], where transactions are processed by the primary
ScyPer node, which multicasts redo logs to secondary nodes.
These secondaries are dedicated to query processing thus
freeing resources and leading to higher throughput rates on
the primary node. To scale out writes as well as reads,
these two strategies could be combined by having multiple
event processing nodes (the primary node in the ScyPer ar-
chitecture), each of them being responsible for a subset of
events. These event processing nodes would then multicast
their redo logs to query processing nodes (secondary nodes
in the ScyPer architecture). We plan to investigate such an

architecture in future research.
From a usability perspective, modern streaming systems

offer many features that help users to set up streaming appli-
cations, such as their out-of-the-box support for sliding and
tumbling windows. On the one hand, MMDBs support ar-
bitrary SQL allowing users to customize the analytical parts
of their workloads and to issue ad-hoc queries. On the other
hand, adding windowed aggregation functions using stored
procedures is a cumbersome task. PipelineDB19, which is
built on top of PostgreSQL, solves this usability issue by ex-
tending SQL with streaming features but still cannot match
the performance of dedicated streaming systems as we found
in early experiments. In addition to out-of-the-box stream-
ing features, modern streaming systems allow users to add
custom code. There has been work to allow for the same in
MMDBs, such as the integration of high-level programming
languages (using user-defined functions). These additions,
however, still do not allow for the same flexibility as writing
plain old Java code. These limitations are mainly caused by
the multi-tenant nature of database systems and the secu-
rity level that these systems need to fulfill. MMDBs would
need to allow for optionally disabling security arrangements
(e.g., enforcing access rights) in favor of better extensibil-
ity. Another mitigation path that MMDBs could follow is
to simply add more streaming features to its SQL process-
ing logic, namely, window-based semantics as proposed by
PipelineDB and StreamSQL [16]. This is also a topic we
plan to address in future research.

Besides extending MMDBs to better support streaming
use cases, the gap between MMDBs and streaming systems
could be closed from the other direction, which would mean
extending streaming systems with additional storage man-
agement features and query mechanisms. There is ongoing
work to make use of Apache Calcite20 (a SQL parser and
optimizer framework) to extend Flink with streaming SQL
and query optimization capabilities. Cache and register lo-
cality are crucial for high query performance and they can
both be addressed very efficiently by compiling query plans
into native code [14]. While this was possible to achieve in
systems like HyPer or Tell, which are written in C++ and
LLVM, it is more difficult to implement using JVM-based
systems such as the streaming systems evaluated in this pa-
per. Moreover, implementing efficient storage management
capabilities is a tedious task in JVM-based languages be-
cause to ensure data locality, custom memory management
has to be implemented outside the JVM heap.

19https://www.pipelinedb.com/
20https://calcite.apache.org



6. CONCLUSIONS
In this paper, we evaluated a broad set of architectures

to address analytics on fast data. We performed an ex-
perimental evaluation including at least one representative
of each architecture. Our experiences as well as the per-
formance results indicate that there still exists a gap be-
tween MMDBs and dedicated streaming systems. MMDBs
are built for multi-tenant environments where durability and
isolation guarantees are essential. Dedicated streaming sys-
tems, on the other hand, often compromise these guarantees
in exchange for better performance or higher flexibility. To
catch up with these systems, MMDBs need to be able to
optionally lower their guarantees. In addition, new archi-
tectures are required that allow MMDBs to scale both their
event and query processing performance to keep up with the
demands for increasingly high event throughput rates. The
question remains whether these additions as well as new ar-
chitectures can enable MMDBs to address a broad set of
streaming workloads. Once fully implemented, we plan to
evaluate HyPer with enabled MVCC to investigate the im-
pact of event processing on analytics including the effects of
the garbage collection overhead MVCC introduces.

7. ACKNOWLEDGEMENTS
We want to thank Gyula Fóra for his help in optimizing

our workload implementation in Flink. This work has been
sponsored by the German Federal Ministry of Education and
Research (BMBF) grant FASTDATA 01IS12057. This work
is further part of the TUM Living Lab Connected Mobility
(TUM LLCM) project and has been funded by the Bavarian
Ministry of Economic Affairs and Media, Energy and Tech-
nology (StMWi) through the Center Digitisation.Bavaria,
an initiative of the Bavarian State Government.

8. REFERENCES

[1] A. Ailamaki, D. J. DeWitt, M. D. Hill, and
M. Skounakis. Weaving relations for cache
performance. In Proceedings of the 27th International

Conference on Very Large Data Bases, pages 169–180.
ACM, 2001.

[2] L. Braun, T. Etter, G. Gasparis, M. Kaufmann,
D. Kossmann, D. Widmer, A. Avitzur, A. Iliopoulos,
E. Levy, and N. Liang. Analytics in motion: High
performance event-processing and real-time analytics
in the same database. In Proceedings of the 2015 ACM

SIGMOD International Conference on Management of

Data, pages 251–264. ACM, 2015.

[3] P. Carbone, S. Ewen, S. Haridi, A. Katsifodimos,
V. Markl, and K. Tzoumas. Apache flink: Stream and
batch processing in a single engine. Data Engineering,
page 28, 2015.

[4] B. Chandramouli, J. Goldstein, M. Barnett,
R. DeLine, D. Fisher, J. C. Platt, J. F. Terwilliger,
and J. Wernsing. Trill: A high-performance
incremental query processor for diverse analytics.
Proceedings of the VLDB Endowment, 8(4):401–412,
2014.

[5] F. Färber, N. May, W. Lehner, P. Große, I. Müller,
H. Rauhe, and J. Dees. The sap hana database–an
architecture overview. IEEE Data Eng. Bull.,
35(1):28–33, 2012.

[6] A. Gupta, F. Yang, J. Govig, A. Kirsch, K. Chan,
K. Lai, S. Wu, S. G. Dhoot, A. R. Kumar, A. Agiwal,
et al. Mesa: Geo-replicated, near real-time, scalable
data warehousing. Proceedings of the VLDB

Endowment, 7(12):1259–1270, 2014.

[7] A. Kemper and T. Neumann. HyPer: A Hybrid OLTP
& OLAP Main Memory Database System Based on
Virtual Memory Snapshots. In ICDE, pages 195–206,
Apr. 2011.

[8] J. Krueger, C. Kim, M. Grund, N. Satish, D. Schwalb,
J. Chhugani, H. Plattner, P. Dubey, and A. Zeier.
Fast updates on read-optimized
databases using multi-core CPUs. PVLDB,
5(1):61–72, 2011.

[9] V. Leis, F. Scheibner, A. Kemper, and T. Neumann.
The ART of practical synchronization. In Proceedings

of the 12th International Workshop on Data

Management on New Hardware, DaMoN 2016, San

Francisco, CA, USA, June 27, 2016, pages 3:1–3:8.
ACM, 2016.

[10] S. Loesing, M. Pilman, T. Etter, and D. Kossmann.
On the design and scalability of distributed
shared-data databases. In Proceedings of the 2015

ACM SIGMOD International Conference on

Management of Data, pages 663–676. ACM, 2015.

[11] F. Mattern and C. Floerkemeier. From the internet of
computers to the internet of things. In From active

data management to event-based systems and more,
pages 242–259. Springer, 2010.

[12] J. Meehan, N. Tatbul, S. Zdonik, C. Aslantas,
U. Cetintemel, J. Du, T. Kraska, S. Madden,
D. Maier, A. Pavlo, et al. S-store: Streaming meets
transaction processing. Proceedings of the VLDB

Endowment, 8(13):2134–2145, 2015.

[13] T. Mühlbauer, W. Rödiger, A. Reiser, A. Kemper, and
T. Neumann. ScyPer: A Hybrid OLTP&OLAP
Distributed Main Memory Database System for
Scalable Real-Time Analytics. In BTW, 2013.

[14] T. Neumann. Efficiently compiling efficient query
plans for modern hardware. Proceedings of the VLDB

Endowment, 4(9):539–550, 2011.

[15] T. Neumann, T. Mühlbauer, and A. Kemper. Fast
Serializable Multi-Version Concurrency Control for
Main-Memory Database Systems. In SIGMOD, pages
677–689, New York, NY, USA, 2015. ACM.

[16] M. Stonebraker, U. Çetintemel, and S. Zdonik. The 8
requirements of real-time stream processing. ACM
SIGMOD Record, 34(4):42–47, 2005.

[17] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy,
J. M. Patel, S. Kulkarni, J. Jackson, K. Gade, M. Fu,
J. Donham, et al. Storm@ twitter. In Proceedings of

the 2014 ACM SIGMOD international conference on

Management of data, pages 147–156. ACM, 2014.

[18] P. Unterbrunner, G. Giannikis, G. Alonso, D. Fauser,
and D. Kossmann. Predictable Performance
for Unpredictable Workloads. PVLDB, 2(1):706–717,
2009.

[19] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and
I. Stoica. Discretized streams: Fault-tolerant
streaming computation at scale. In Proceedings of the

Twenty-Fourth ACM Symposium on Operating

Systems Principles, pages 423–438. ACM, 2013.


