
Fast Serializable Multi-Version Concurrency Control
for Main-Memory Database Systems

Thomas Neumann Tobias Mühlbauer Alfons Kemper

Technische Universität München
{neumann, muehlbau, kemper}@in.tum.de

ABSTRACT
Multi-Version Concurrency Control (MVCC) is a widely em-
ployed concurrency control mechanism, as it allows for exe-
cution modes where readers never block writers. However,
most systems implement only snapshot isolation (SI) instead
of full serializability. Adding serializability guarantees to ex-
isting SI implementations tends to be prohibitively expensive.

We present a novel MVCC implementation for main-mem-
ory database systems that has very little overhead compared
to serial execution with single-version concurrency control,
even when maintaining serializability guarantees. Updating
data in-place and storing versions as before-image deltas in
undo buffers not only allows us to retain the high scan per-
formance of single-version systems but also forms the ba-
sis of our cheap and fine-grained serializability validation
mechanism. The novel idea is based on an adaptation of
precision locking and verifies that the (extensional) writes
of recently committed transactions do not intersect with the
(intensional) read predicate space of a committing transac-
tion. We experimentally show that our MVCC model allows
very fast processing of transactions with point accesses as
well as read-heavy transactions and that there is little need
to prefer SI over full serializability any longer.

Categories and Subject Descriptors
H.2 [Database Management]: Systems

Keywords
Multi-Version Concurrency Control; MVCC; Serializability

1. INTRODUCTION
Transaction isolation is one of the most fundamental fea-

tures offered by a database management system (DBMS). It
provides the user with the illusion of being alone in the da-
tabase system, even in the presence of multiple concurrent
users, which greatly simplifies application development. In
the background, the DBMS ensures that the resulting con-
current access patterns are safe, ideally by being serializable.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2749436.

Serializability is a great concept, but it is hard to im-
plement efficiently. A classical way to ensure serializability
is to rely on a variant of Two-Phase Locking (2PL) [42].
Using 2PL, the DBMS maintains read and write locks to
ensure that conflicting transactions are executed in a well-
defined order, which results in serializable execution sched-
ules. Locking, however, has several major disadvantages:
First, readers and writers block each other. Second, most
transactions are read-only [33] and therefore harmless from
a transaction-ordering perspective. Using a locking-based
isolation mechanism, no update transaction is allowed to
change a data object that has been read by a potentially
long-running read transaction and thus has to wait until the
read transaction finishes. This severely limits the degree of
concurrency in the system.

Multi-Version Concurrency Control (MVCC) [42, 3, 28]
offers an elegant solution to this problem. Instead of up-
dating data objects in-place, each update creates a new ver-
sion of that data object, such that concurrent readers can
still see the old version while the update transaction pro-
ceeds concurrently. As a consequence, read-only transac-
tions never have to wait, and in fact do not have to use
locking at all. This is an extremely desirable property and
the reason why many DBMSs implement MVCC, e.g., Ora-
cle, Microsoft SQL Server [8, 23], SAP HANA [10, 37], and
PostgreSQL [34]. However, most systems that use MVCC do
not guarantee serializability, but the weaker isolation level
Snapshot Isolation (SI). Under SI, every transaction sees
the database in a certain state (typically the last committed
state at the beginning of the transaction) and the DBMS
ensures that two concurrent transactions do not update the
same data object. Although SI offers fairly good isolation,
some non-serializable schedules are still allowed [1, 2]. This
is often reluctantly accepted because making SI serializable
tends to be prohibitively expensive [7]. In particular, the
known solutions require keeping track of the entire read set
of every transaction, which creates a huge overhead for read-
heavy (e.g., analytical) workloads. Still, it is desirable to
detect serializability conflicts as they can lead to silent data
corruption, which in turn can cause hard-to-detect bugs.

In this paper we introduce a novel way to implement
MVCC that is very fast and efficient, both for SI and for full
serializability. Our SI implementation is admittedly more
carefully engineered than totally new, as MVCC is a well un-
derstood approach that recently received renewed interest in
the context of main-memory DBMSs [23]. Careful engineer-
ing, however, matters as the performance of version main-
tenance greatly affects transaction and query processing. It

Thomas

Larry

Alfons

Judy

Tobias

Sally

Hanna

Hasso

Mike

Lisa

Betty

Cindy

Henry

Praveen

Wendy

10

10

10

10

10

7

10

10

10

10

10

10

11

10

11

Accounts

Owner Bal
Vers

io
nVect

or

Ty,Bal,8

T5,Bal,9 T5,Bal,10

Undo buffer of Ty (Sallyà...)

Undo buffer of T5

T3,Bal,10

Undo buffer of T3

T3

T5

re
ce
n
tlyC

o
m
m
itte

d

T3,Bal,10

[0,0)

[0,1)

[2,5)

Vers
io

nedPosit
io

ns

In
 a

fix
ed le

ngt
h ra

nge

[fi
rs

t,l
as

t)

Tx

Ty

Tz

transactionID
startTim

e

T4

T6

T7

Read only: Σ

SallyàMike

Read only: Σ

Actions

(not stored)

SallyàWendy

SallyàHenry

Actions

(not stored – for illustration)

com
m

itTim
e

active
Tran

sactio
n
s

main-memory column-store

latest version in-place

physical before-image deltas (i.e., column values)
in undo buffers

version information stored in additional hidden column in base relation
(indexes only store references, i.e., rowIDs, to records in base relations)

Figure 1: Multi-version concurrency control example: transferring $1 between Accounts (from → to) and
summing all Balances (Σ)

is also the basis of our cheap serializability check, which ex-
ploits the structure of our versioning information. We fur-
ther retain the very high scan performance of single-version
systems using synopses of positions of versioned records in
order to efficiently support analytical transactions.

In particular, the main contributions of this paper are:

1. A novel MVCC implementation that is integrated into
our high-performance hybrid OLTP and OLAP main-
memory datbase system HyPer [21]. Our MVCC model
creates very little overhead for both transactional and
analytical workloads and thereby enables very fast and
efficient logical transaction isolation for hybrid systems
that support these workloads simultaneously.

2. Based upon that, a novel approach to guarantee seri-
alizability for snapshot isolation (SI) that is both pre-
cise and cheap in terms of additional space consump-
tion and validation time. Our approach is based on
an adaptation of Precision Locking [42] and does not
require explicit read locks, but still allows for more
concurrency than 2PL.

3. A synopses-based approach (VersionedPositions) to re-
tain the high scan performance of single-version sys-
tems for read-heavy and analytical transactions, which
are common in today’s workloads [33].

4. Extensive experiments that demonstrate the high per-
formance and trade-offs of our MVCC implementation.

Our novel MVCC implementation is integrated into our
HyPer main-memory DBMS [21], which supports SQL-92
query and ACID-compliant transaction processing (defined
in a PL/SQL-like scripting language [20]). For queries and
transactions, HyPer generates LLVM code that is then just-
in-time compiled to optimized machine code [31]. In the

past, HyPer relied on single-version concurrency control and
thus did not efficiently support interactive and sliced trans-
actions, i.e., transactions that are decomposed into multiple
tasks such as stored procedure calls or individual SQL state-
ments. Due to application roundtrip latencies and other
factors, it is desirable to interleave the execution of these
tasks. Our novel MVCC model enables this logical concur-
rency with excellent performance, even when maintaining
serializability guarantees.

2. MVCC IMPLEMENTATION
We explain our MVCC model and its implementation ini-

tially by way of an example. The formalism of our serializ-
ability theory and proofs are then given in Section 3. Fig-
ure 1 illustrates the version maintenance using a traditional
banking example. For simplicity, the database consists of
a single Accounts table that contains just two attributes,
Owner and Balance. In order to retain maximum scan per-
formance we refrain from creating new versions in newly
allocated areas as in Hekaton [8, 23]; instead we update in-
place and maintain the backward delta between the updated
(yet uncommitted) and the replaced version in the undo
buffer of the updating transaction. Updating data in-place
retains the contiguity of the data vectors that is essential for
high scan performance. In contrast to positional delta trees
(PDTs) [15], which were designed to allow more efficient
updates in column stores, we refrain from using complex
data structures for the deltas to allow for a high concurrent
transactional throughput.

Upon committing a transaction, the newly generated ver-
sion deltas have to be re-timestamped to determine their
validity interval. Clustering all version deltas of a trans-
action in its undo buffer expedites this commit processing
tremendously. Furthermore, using the undo buffers for ver-

sion maintenance, our MVCC model incurs almost no stor-
age overhead as we need to maintain the version deltas (i.e.,
the before-images of the changes) during transaction pro-
cessing anyway for transactional rollbacks. The only differ-
ence is that the undo buffers are (possibly) maintained for a
slightly longer duration, i.e., for as long as an active trans-
action may still need to access the versions contained in the
undo buffer. Thus, the VersionVector shown in Figure 1
anchors a chain of version reconstruction deltas (i.e., col-
umn values) in “newest-to-oldest” direction, possibly span-
ning across undo buffers of different transactions. Even for
our column store backend, there is a single VersionVector
entry per record for the version chain, so the version chain
in general connects before-images of different columns of one
record. Actually, for garbage collection this chain is main-
tained bidirectionally, as illustrated for Sally’s Bal-versions.

2.1 Version Maintenance
Only a tiny fraction of the database will be versioned, as

we continuously garbage collect versions that are no longer
needed. A version (reconstruction delta) becomes obsolete
if all active transactions have started after this delta was
timestamped. The VersionVector contains null whenever
the corresponding record is unversioned and a pointer to the
most recently replaced version in an undo buffer otherwise.

For our illustrative example only two transaction types
are considered: transfer transactions are marked as “from
→ to” and transfer $1 from one account to another by first
subtracting 1 from one account’s Bal and then adding 1 to
the other account’s Bal. For brevity we omit the discussion
of object deletions and creations in the example. Initially, all
Balances were set to 10. The read-only transactions denoted
Σ sum all Balances and — in our “closed world” example —
should always compute $150, no matter under what start-
Time-stamp they operate.

All new transactions entering the system are associated
with two timestamps: transactionID and startTime-stamps.
Upon commit, update transactions receive a third times-
tamp, the commitTime-stamp that determines their serial-
ization order. Initially all transactions are assigned identi-
fiers that are higher than any startTime-stamp of any trans-
action. We generate startTime-stamps from 0 upwards and
transactionIDs from 263 upwards to guarantee that transac-
tionIDs are all higher than the startTimes. Update trans-
actions modify data in-place. However, they retain the old
version of the data in their undo buffer. This old version
serves two purposes: (1) it is needed as a before-image in
case the transaction is rolled back (undone) and (2) it serves
as a committed version that was valid up to now. This most
recently replaced version is inserted in front of the (possibly
empty) version chain starting at the VersionVector. While
the updater is still running, the newly created version is
marked with its transactionID, whereby the uncommitted
version is only accessible by the update transaction itself (as
checked in the second condition of the version access pred-
icate, cf., Section 2.2). At commit time an update trans-
action receives a commitTime-stamp with which its version
deltas (undo logs) are marked as being irrelevant for trans-
actions that start from “now” on. This commitTime-stamp
is taken from the same sequence counter that generates the
startTime-stamps. In our example, the first update transac-
tion that committed at timestamp T3 (Sally→Wendy) cre-
ated in its undo buffer the version deltas timestamped T3 for

Sally’s and Wendy’s balances, respectively. The timestamp
indicates that these version deltas have to be applied for
transactions whose startTime is below T3 and that the suc-
cessor version is valid from there on for transactions starting
after T3. In our example, at startTime T4 a reader transac-
tion with transactionID Tx entered the system and is still
active. It will read Sally’s Balance at reconstructed value 9,
Henry’s at reconstructed value 10, and Wendy’s at value 11.
Another update transaction (Sally → Henry) committed at
timestamp T5 and correspondingly marked the version deltas
it created with the validity timestamp T5. Again, the ver-
sions belonging to Sally’s and Wendy’s balances that were
valid just before T5’s update are maintained as before im-
ages in the undo buffer of T5. Note that a reconstructed
version is valid from its predecessor’s timestamp until its
own timestamp. Sally’s Balance version reconstructed with
T5’s undo buffer is thus valid from timestamp T3 until times-
tamp T5. If a version delta has no predecessor (indicated by
a null pointer) such as Henry’s balance version in T5’s undo
buffer its validity is determined as from virtual timestamp
“0” until timestamp T5. Any read access of a transaction
with startTime below T5 applies this version delta and any
read access with a startTime above or equal to T5 ignores it
and thus reads the in-place version in the Accounts table.

As said before, the deltas of not yet committed versions re-
ceive a temporary timestamp that exceeds any “real” times-
tamp of a committed transaction. This is exemplified for
the update transaction (Sally → Henry) that is assigned
the transactionID timestamp Ty of the updater. This tem-
porary, very large timestamp is initially assigned to Sally’s
Balance version delta in Ty’s undo buffer. Any read access,
except for those of transaction Ty, with a startTime-stamp
above T5 (and obviously below Ty) apply this version delta to
obtain value 8. The uncommitted in-place version of Sally’s
balance with value 7 is only visible to Ty.

2.2 Version Access
To access its visible version of a record, a transaction T

first reads the in-place record (e.g., from the column- or
row-store) and then undoes all version changes along the
(possibly empty) version chain of undo buffer entries — by
overwriting updated attributes in the copied record with the
before-images from the undo buffers — up to the first version
v, for which the following condition holds (pred points to the
predecessor; TS denotes the associated timestamp):

v .pred = null ∨ v .pred .TS = T ∨ v .pred .TS < T.startTime

The first condition holds if there is no older version available
because it never existed or it was (safely) garbage collected
in the meantime. The second condition allows a transac-
tion to access its own updates (remember that the initial
transactionID timestamps assigned to an active transaction
are very high numbers exceeding any start time of a trans-
action). The third condition allows reading a version that
was valid at the start time of the transaction. Once the ter-
mination condition is satisfied, the visible version has been
re-materialized by“having undone”all changes that have oc-
curred in the meantime. Note that, as shown in Section 4,
version “reconstruction” is actually cheap, as we store the
physical before-image deltas and thus do not have to in-
versely apply functions on the in-place after-image.

Traversing the version chain guarantees that all reads are
performed in the state that existed at the start of the trans-

.unchanged object.

.deleted object.

.created object (phantom).

.created & deleted.
object (phantom)

.modified object.

startTime commitTimelifetime of T

Figure 2: Modifications/deletions/creations of data
objects relative to the lifetime of transaction T

action. This is sufficient for serializability of read-only trans-
actions. However, for update transactions we need a valida-
tion phase that (conceptually) verifies that its entire read set
did not change during the execution of the transaction. In
previous approaches, this task is inherently complex as the
read set can be very large, especially for main-memory data-
base systems that tend to rely on full-table scans much more
frequently than traditional disk-based applications [33]. For-
tunately, we found a way to limit this validation to the ob-
jects that were actually changed and are still available in the
undo buffers.

2.3 Serializability Validation
We deliberately avoid write-write conflicts in our MVCC

model, as they may lead to cascading rollbacks. If another
transaction tries to update an uncommitted data object (as
indicated by the large transactionID timestamp in its pre-
decessor version), it is aborted and restarted. Therefore, the
first VersionVector pointer always leads to an undo buffer
that contains a committed version — except for unversioned
records where the pointer is null. If the same transaction
modifies the same data object multiple times, there is an
internal chain of pointers within the same undo buffer that
eventually leads to the committed version.

In order to retain a scalable lock-free system we rely on
optimistic execution [22] in our MVCC model. To guaran-
tee serializability, we thus need a validation phase at the
end of a transaction. We have to ensure that all reads dur-
ing transaction processing could have been (logically) at the
very end of the transaction without any observable change
(as shown for the object on the top of Figure 2). In terms
of this figure, we will detect the four (lower) transitions:
modification, deletion, creation, and creation & deletion of
an object that is “really” relevant for the transaction T . For
this purpose, transactions draw a commitTime-stamp from
the counter that is also “giving out” the startTime-stamps.
The newly drawn number determines the serialization or-
der of the transaction. Only updates that were committed
during T ’s lifetime, i.e., in between the startTime and the
commitTime, are potentially relevant for the validation. In
terms of Figure 2, all events except for the top-most may
lead to an abort, but only if these modified/deleted/created
objects really intersect with T ’s read predicate space.

In previous approaches for serializability validation, such
as in Microsoft’s Hekaton [8, 23] and PostgreSQL [34], the
entire read set of a transaction needs to be tracked (e.g.,
by using SIREAD locks as in PostgreSQL) and needs to be
re-checked at the end of the transaction — by redoing all
the read accesses. This is prohibitively expensive for large
read sets that are very typical for scan-heavy main-memory

Balance

In
te

re
st

P3:
I between .1 and .2
and
B between 10 and 20

P1:
I = 1.6

X

P2:
I=1 and
B=15

X XX

undo buffers under validatIon

predicate space (for 4 predicates)

clash

1.6

0.2

0.1

10 20

[I=0.13,B=14]

intersection of point x
with predicate

X
P4:
I = 1.7 and B = 15

X

Figure 3: Checking data points in the undo buffers
against the predicate space of a transaction

database applications [33], including analytical transactions.
Here, our novel idea of using the undo-buffers for validation
comes into play. Thereby, we limit the validation to the
number of recently changed and committed data objects,
no matter how large the read set of the transaction was.
For this purpose, we adapt an old (and largely “forgotten”)
technique called Precision Locking [17] that eliminates the
inherent satisfiability test problem of predicate locking. Our
variation of precision locking tests discrete writes (updates,
deletions, and insertions of records) of recently committed
transactions against predicate-oriented reads of the transac-
tion that is being validated. Thus, a validation fails if such
an extensional write intersects with the intensional reads
of the transaction under validation [42]. The validation is
illustrated in Figure 3, where we assume that transaction
T has read objects under the four different predicates P1,
P2, P3, and P4, which form T ’s predicate space. We need
to validate the three undo buffers at the bottom and val-
idate that their objects (i.e., data points) do not intersect
with T’s predicates. This is done by evaluating the predi-
cates for those objects. If the predicates do not match, then
there is no intersection and the validation passes, otherwise,
there is a conflict. This object-by-predicate based valida-
tion eliminates the undecidability problem inherent in other
approaches that require predicate-by-predicate validation.

In order to find the extensional writes of other transac-
tions that committed during the lifetime of a transaction T ,
we maintain a list of recentlyCommitted transactions, which
contains pointers to the corresponding undo buffers (cf., Fig-
ure 1). We start our validation with the undo buffers of the
oldest transaction that committed after T ’s startTime and
traverse to the youngest one (at the bottom of the list).
Each of the undo buffers is examined as follows: For each
newly created version, we check whether it satisfies any of
T ’s selection predicates. If this is the case, T ’s read set is
inconsistent because of the detected phantom and it has to
be aborted. For a deletion, we check whether or not the
deleted object belonged to T ’s read set. If so, we have to
abort T . For a modification (update) we have to check both,

B = 15

P

I = 1 I = 1.7

I = 1.6

I between .1 and .2

B between 10 and 20

Figure 4: Predicate Tree (PT) for the predicate
space of Figure 3

the before image as well as the after image. If either inter-
sects with T ’s predicate space we abort T . This situation is
shown in Figure 3, where the data point x of the left-most
undo buffer satisfies predicate P3, meaning that it intersects
with T ’s predicate space.

After successful validation, a transaction T is committed
by first writing its commit into the redo-log (which is re-
quired for durability). Thereafter, all of T ’s transactionID
timestamps are changed to its newly assigned commitTime-
stamp. Due to our version maintenance in the undo buffers,
all these changes are local and therefore very cheap. In case
of an abort due to a failed validation, the usual undo-rollback
takes place, which also removes the version delta from the
version chain. Note that the serializability validation in our
MVCC model can be performed in parallel by several trans-
actions whose serialization order has been determined by
drawing the commitTime-stamps.

2.3.1 Predicate Logging
Instead of the read set, we log the predicates during the

execution of a transaction for our serializability validation.
Note that, in contrast to Hekaton [23], HyPer not only allows
to access records through an index, but also through a base
table scan. We log predicates of both access patterns in
our implementation. Predicates of a base table access are
expressed as restrictions on one or more attributes of the
table. We log these restrictions in our predicate log on a
per-relation basis. Index accesses are treated similarly by
logging the point and range lookups on the index.

Index nested loop joins are treated differently. In this
case, we log all values that we read from the index as pred-
icates. As we potentially read many values from the index,
we subsequently coarsen these values to ranges and store
these ranges as predicates in the predicate log instead. Other
join types are not treated this way. These joins are preceded
by (potentially restricted) base table accesses.

2.3.2 Implementation Details
From an implementation perspective, a transaction logs

its data accesses as read predicates on a per-relation basis
in a designated predicate log. We always use 64 bit integer
comparison summaries per attribute to allow for efficient
predicate checks based on cheap integer operations and to
keep the size of the predicate log small. Variable-length data
objects such as strings are hashed to 64 bit summaries.

Traditional serializable MVCC models detect conflicts at
the granularity of records (e.g., by “locking” the record).
In our implementation we log the comparison summaries
for restricted attributes (predicates), which is sufficient to
detect serializability conflicts at the record-level (SR-RL).
However, sometimes a record is too coarse. If the sets of
read and written attributes of transactions do not overlap, a
false positive conflict could be detected. To eliminate these
false positives, which would lead to false aborts, we also

implemented a way to check for serializability conflicts at
the granularity of attributes (SR-AL): in addition to the
restricted attributes we further log which attributes are ac-
cessed, i.e., read, without a restriction. During validation we
then know which attributes were accessed and can thus skip
the validation of versions that modified attributes that were
not accessed. The evaluation in Section 4.4 shows that seri-
alizability checks at the attribute-level (SR-AL) reduce the
number of false positives compared to serializability checks
at the record-level (SR-RL) while barely increasing the over-
head of predicate logging and validation.

Serializability validation works as follows: At the begin-
ning of the validation of a committing transaction, a Pred-
icate Tree (PT) is built on a per-relation basis from the
predicate log. PTs are directed trees with a root node P .
The PT for the predicate space in Figure 3 is exemplified in
Figure 4. The nodes of a PT are single-attribute predicates,
e.g., B = 15. Edges connect nodes with a logical AND, e.g.,
B = 15 ∧ I = 1. The logical OR of all paths in the tree
then defines the predicate space. Nodes for the same predi-
cate that share the same root are merged together, e.g., for
B = 15 in Figure 4. During validation, data objects are
checked whether they satisfy the PT, i.e., whether there is
a path in the PT that the data object satisfies.

2.4 Garbage Collection
Garbage collection of undo buffers is continuously per-

formed whenever a transaction commits. After each com-
mit, our MVCC implementation determines the now oldest
visible transactionID, i.e., the oldest timestamp of a transac-
tion that has updates that are visible by at least one active
transaction. Then, all committed transactions whose trans-
actionID is older than that timestamp are removed from
the list of recently committed transactions, the references
to their undo buffers are atomically removed from the ver-
sion lists, and the undo buffers themselves are marked with
a tombstone. Note that it is not possible to immediately
reuse the memory of a marked undo buffer, as other trans-
actions can still have references to this buffer; although the
buffer is definitely not relevant for these transactions, it may
still be needed to terminate version chain traversals. It is
safe to reuse a marked undo buffer as soon as the oldest ac-
tive transaction has started after the undo buffer had been
marked. As in our system, this can be implemented with
very little overhead, e.g., by maintaining high water marks.

2.5 Handling of Index Structures
Unlike other MVCC implementations in Hekaton [8, 23]

and PostgreSQL [34], our MVCC implementation does not
use (predicate) locks and timestamps to mark read and mod-
ified keys in indexes. To guarantee SI and serializability,
our implementation proceeds as follows: If an update up-
dates only non-indexed attributes, updates are performed
as usual. If an update updates an indexed attribute, the
record is deleted and re-inserted into the relation and both,
the deleted and the re-inserted record, are stored in the in-
dex. Thus, indexes retain references to all records that are
visible by any active transaction. Just like undo buffers,
indexes are cleaned up during garbage collection.

We ensure the uniqueness of primary keys by aborting a
transaction that inserts a primary key that exists either (i) in
the snapshot that is visible to the transaction, (ii) in the last
committed version of the key’s record, or (iii) uncommitted

as an insert in an undo buffer. Note that these are the
only cases that need to be checked, as updates of indexed
attributes are performed as a deletion and insertion.

For foreign key constraints we need to detect the case
when an active transaction deletes a primary key and a con-
current transaction inserts a foreign key reference to that
key. In this case, we abort the inserting transaction as it
detects the (possibly uncommitted) delete. The inserting
transaction is aborted pro-actively, even if the delete is un-
commited, because transactions usually commit and only
rarely abort.

2.6 Efficient Scanning
Main-memory database systems for real-time business in-

telligence, i.e., systems that efficiently handle transactional
and analytical workloads in the same database, rely heavily
on “clock-rate” scan performance [43, 26]. Therefore, test-
ing each data object individually (using a branch statement)
whether or not it is versioned would severely jeopardize per-
formance. Our MVCC implementation in HyPer uses LLVM
code generation and just-in-time compilation [31] to gener-
ate efficient scan code at runtime. To mitigate the negative
performance implications of repeated version branches, the
generated code uses synopses of versioned record positions
to determine ranges that can be scanned at maximum speed.

The generated scan code proceeds under consideration of
these synopses, called VersionedPositions, shown on the left-
hand side of Figure 1. These synopses maintain the position
of the first and the last versioned record for a fixed range
of records (e.g., 1024) in a 32 bit integer, where the position
of the first versioned record is stored in the high 16 bit and
the position of the last versioned record is stored in the low
16 bit, respectively. Maintenance of VersionedPositions is
very cheap as insertions and deletions of positions require
only a few logical operations (cf., evaluation in Section 4).
Further, deletions are handled fuzzily and VersionedPosi-
tions are corrected during the next scan where the necessary
operations can be hidden behind memory accesses.

Note that the versions are continuously garbage collected;
therefore, most ranges do not contain any versions at all,
which is denoted by an empty interval [x, x) (i.e., the lower
and upper bound of the half-open interval are identical).
E.g., this is the case for the synopsis for the first 5 records
in Figure 1. Using the VersionedPositions synopses, ad-
jacent unversioned records are accumulated to one range
where version checking is not necessary. In this range, the
scan code proceeds at maximum speed without any branches
for version checks. For modified records, the VersionVector
is consulted and the version of the record that is visible to
the transaction is reconstructed (cf., Section 2.2). Again,
a range for modified records is determined in advance by
scanning the VersionVector for set version pointers to avoid
repeated testing whether a record is versioned.

Looking at Figure 1, we observe that for strides 0 . . . 4
and 6 . . . 10 the loop on the unversioned records scans the
Balance vector at maximum speed without having to check
if the records are versioned. Given the fact that the strides
in between two versioned objects are in the order of millions
in a practical setting, the scan performance penalty incurred
by our MVCC is marginal (as evaluated in Section 4.1). De-
termining the ranges of versioned objects further ensures
that the VersionedPositions synopses are not consulted in
hotspot areas where all records are modified.

2.7 Synchronization of Data Structures
In this work, we focus on providing an efficient and elegant

mechanism to allow for logical concurrency of transactions,
which is required to support interactive and sliced trans-
actions, i.e., transactions that are decomposed into multiple
tasks such as stored procedure calls or individual SQL state-
ments. Due to application roundtrips and other factors, it
is desirable to interleave the execution of these decomposed
tasks, and our serializable MVCC model enables this logical
concurrency. Thread-level concurrency is a largely orthog-
onal topic. We thus only briefly describe how our MVCC
data structures can be synchronized and how transactional
workloads can be processed in multiple threads.

To guarantee thread-safe synchronization in our imple-
mentation, we obtain short-term latches on the MVCC data
structures for the duration of one task (a transaction typi-
cally consists of multiple such calls). The commit process-
ing of writing transactions is done in a short exclusive crit-
ical section by first drawing the commitTime-stamp, vali-
dating the transaction, and inserting commit records into
the redo log. Updating the validity timestamps in the undo
buffers can be carried out unsynchronized thereafter by us-
ing atomic operations. Our lock-free garbage collection that
continuously reclaims undo log buffers has been detailed in
Section 2.4. Currently we use conventional latching-based
synchronization of index structures, but could adapt to lock-
free structures like the Bw-Tree [25] in the future.

In future work, we want to optimize the thread-parallel-
ization of our implementation further. We currently still
rely on classical short-term latches to avoid race conditions
between concurrent threads. These latches can largely be
avoided by using hardware transactional memory (HTM) [24]
during version retrieval, as it can protect a reader from the
unlikely event of a concurrent (i.e., racy) updater. Note that
such a conflict is very unlikely as it has to happen in a time
frame of a few CPU cycles. A combination of our MVCC
model and HTM is very promising and in initial experiments
indeed outperforms our current implementation.

3. THEORY
In this section, we analyze our serializable MVCC model

more formally in the context of serializability theory.

3.1 Discussion of our MVCC Model
In order to formalize our MVCC scheme we need to intro-

duce some notation that is illustrated in Figure 5. On the
top of the figure a schedule consisting of four transactions
is shown. These transactions start at times S1, S2, S3, and
S4, respectively. As they access different versions of the data
objects, we need a version ordering/numbering scheme in or-
der to differentiate their reads and their version creations.
This is shown for the same four-transaction-schedule at the
bottom of the figure.

Transactions are allowed to proceed concurrently. They
are, however, committed serially. An update transaction
draws its commitTime-stamp from the same counter that
generates the startTime-stamps. The commitTime-stamps
determine the commit order and, as we will see, they also
determine the serialization order of the transactions. Read-
only transactions do not need to draw a commit order times-
tamp; they reuse their startTime-stamp. Therefore, in our
example the transaction that started at S1 obtained the com-
mitTime-stamp T6, because the transaction that started at

S1
commitr(x)

S2
commitr(y)

S3
commitr(y)

S5
commitr(y)

r(x)

w(x)

w(y)

w(y)

S1
T6

commit(x6)r(x0)

S2
T4

commit(y4)r(y0)

S3
T3

commitr(y0)

S5
T7

commit(y7)r(y4)

r(x0)

w(x)

re
ad

-o
nl

y
tr

an
sa

ct
io

n:

co
m

m
it

TS
 =

st
ar

tT
im

e
TSexplicit versioning

w(y ⃞)

w(y ⃞)

Figure 5: Example of the explicit versioning nota-
tion in our MVCC model

S2 committed earlier at timestamp T4. The read-only trans-
action that started at timestamp S3 logically also commits
at timestamp T3.

Transactions read all the data in the version that was com-
mitted (i.e., created) most recently before their startTime-
stamp. Versions are only committed at the end of a trans-
action and therefore receive the identifiers corresponding to
the commitTime-stamps of the transaction that creates the
version. The transaction schedule of Figure 5 creates the
version chains y0 → y4 → y7 and x0 → x6. Note that ver-
sions are not themselves (densely) numbered because of our
scheme of identifying versions with the commitTime-stamp
of the creating transaction. As we will prove in Section 3.2,
our MVCC model guarantees equivalence to a serial mono-
version schedule in commitTime-stamp order. Therefore,
the resulting schedule of Figure 5 is equivalent to the serial
mono-version execution: r3(y), r3(x), c3, r4(y), w4(y), c4,
r6(x), w6(x), c6, r7(y), w7(y), c7. Here all the operations
are subscripted with the transaction’s commitTime-stamp.

Local writing is denoted as w(x). Such a “dirty” data
object is only visible to the transaction that wrote it. In
our implementation (cf., Section 2.1), we use the very large
transaction identifiers to make the dirty objects invisible to
other transactions. In our formal model we do not need these
identifiers. As we perform updates in-place, other transac-
tions trying to (over-)write x are aborted and restarted.
Note that reading x is always possible, because a transac-
tion’s reads are directed to the version of x that was commit-
ted most recently before the transaction’s startTime-stamp
— with one exception: if a transaction updates an object
x, i.e., w(x), it will subsequently read its own update, i.e.,
r(x). This is exemplified for transaction (S1, T2) on the up-
per left hand side of Figure 6(a). In our implementation this
read-your-own-writes scheme is again realized by assigning
very large transaction identifiers to dirty data versions.

Figure 6(a) further exemplifies a cycle of rw-dependencies,
often also referred to as rw-antidependencies [11]. rw-antide-
pendencies play a crucial role in non-serializable schedules
that are compliant under SI. The first rw-antidependency
involving r(y0) and w(y) in the figure could not have been

detected immediately as the write of y in (S4, T7) happens
after the read of y; the second rw-antidependency involving
r(x2) and w(x) on the other hand could have been detected

immediately, but in our MVCC model we opted to validate
all reads at commit time. After all, the rw-antidependencies
could have been resolved by an abort of (S4, T7) or by a
commit of the reading transaction before T7.

The benefits of MVCC are illustrated in Figure 6(b), where
transaction (S5, T6) managed to“slip in front”of transaction
(S4, T7) even though it read x after (S4, T7) wrote x. Obvi-
ously, with a single-version scheduler this degree of logical
concurrency would not have been possible. The figure also
illustrates the benefits of our MVCC scheme that keeps an
arbitrary number of versions instead of only two as in [36].
The “long” read transaction (S1, T1) needs to access x0 even
though in the meantime the two newer versions x3 and x7
were created. Versions are only garbage collected after they
are definitely no longer needed by other active transactions.

Our novel use of precision locking consisting of collecting
the read predicates and validating recently committed ver-
sions against these predicates is illustrated in Figure 6(c).
Here, transaction (S2, T5) reads x0 with predicate P , de-
noted rP (x0). When the transaction that started at S2 tries
to commit, it validates the before- and after-images of ver-
sions that were committed in the meantime. In particular,
P (x0) is true and therefore leads to an abort and restart
of the transaction. Likewise, phantoms and deletions are
detected as exemplified for the insert i(o) and the delete
d(u) of transaction (S1, T4). Neither the inserted object
nor the deleted object are allowed to intersect with the pred-
icates of concurrent transactions that commit after T4.

3.2 Proof of Serializability Guarantee
We will now prove that our MVCC scheme with predicate

space validation guarantees that any execution is serializable
in commit order.

Theorem. The committed projection of any multi-version
schedule H that adheres to our protocol is conflict equiva-
lent to a serial mono-version schedule H ′ where the commit-
ted transactions are ordered according to their commitTime-
stamps and the uncommitted transactions are removed.

Proof. Due to the nature of the MVCC protocol, the effects
of any uncommitted transaction can never be seen by any
other successful transaction (reads will ignore the uncom-
mitted writes, writes will either not see the uncommitted
writes or lead to aborts). Therefore, it is sufficient to con-
sider only committed transactions in this proof.

Basically, we will now show that all dependencies are in
the direction of the order of their commitTime-stamps and
thus any execution is serializable in commit order. Read-
only transactions see a stable snapshot of the database at
time Sb, and get assigned the same commitTime-stamp Tb =
Sb, or, in other words, they behave as if they were executed
at the point in time of their commitTime-stamp, which is
the same as their startTime-stamp.

Update transactions are started at Sb, and get assigned a
commitTime-stamp Tc with Tc > Sb. We will now prove by
contradiction, that the transactions behave as if they were
executed at the time point Tc. Assume T is an update-
transaction from the committed projection of H (i.e., T has
committed successfully), but T could not have been delayed
to the point Tc. That is, T performed an operation o1 that
conflicts with another operation o2 by a second transaction
T ′ with o1 < o2 and T ′ committed during T ’s lifetime, i.e.,
within the time period Sb ≤ T ′

c < Tc. If T ′ committed after

S1

T2

commit(x2)r(x0)

S3
r(x2)

S4

T7

commit(x7,y7)r(x2)

S5
r(y0)

r(y0)

r(x2)

succeeds because it is a read-only transaction

abort due to read-write conflict: validation fails as
{x2,x6,y0,y6} intersect predicate space of S5

S6
r(y0) r(x2)

T6

commit

immediate abort due to write-write conflict with x6

ww

rwrw

w(x ⃞)

w(x ⃞)r(x ⃞)w(x ⃞)

w(x ⃞)w(y ⃞)

w(z ⃞)

(a) a write-write conflict and a read-write conflict

S1
T1
commitr(y0)

S2
T3

commit(x3)

S4
T7

commit(x7,z7)r(x3)

S5
T6

commit(y6)r(x3)

r(x0)

r(z0)

r(z0)

r(y0)

r(x0)w(x ⃞)

w(x ⃞) w(z ⃞)

w(y ⃞)

(b) benefits of our MVCC model

S1
commit(x4,o4,u)r(x0)

S2
rP(x0) rQ(z0) Test P(x0),Q(x0),P(x5),Q(x5),P(o5),Q(o5),P(u0),Q(u0)

S3
rS(...) Test S(x0),S(x5),S(o5),S(u0)

abort because P(x0)=true

abort if either Test is true:
S(o5) indicates phantom

T4

T5

T6

w(z ⃞)

w(y ⃞)

w(x ⃞)d(u ⃞)i(o ⃞)

(c) a read-write conflict, a read-delete conflict, and a phantom conflict

Figure 6: Example schedules in our MVCC model

T , i.e., T ′
c > Tc, we could delay T ′ (and thus o2) until after

Tc, thus we only have to consider the case T ′
c < Tc.

There are four possible combinations for the operations
o1 and o2. If both are reads, we can swap the order of both,
which is a contradiction to our assumption that o1 and o2 are
conflicting. If both are writes, T ′ would have aborted due to
to our protocol of immediately aborting upon detecting ww -
conflicts. Thus, there is a contradiction to the assumption
that both, T and T ′, are committed transactions. If o1 is a
read and o2 is a write, the update o2 is already in the undo
buffers when T commits, as T ′

c < Tc and the predicate P
of the read of o1 has been logged. The predicate validation
at Tc then checks if o1 is affected by o2 by testing whether
P is satisfied for either the before- or the after-image of o2
(i.e., if the read should have seen the write), as illustrated in
Figure 6(c). If not, that is a contradiction to the assumption
that o1 and o2 are conflicting. If yes, that is a contradiction
to the assumption that T has committed successfully as T
would have been aborted when P was satisfied. If o1 is a
write and o2 is a read, the read has ignored the effect of o1
in the MVCC mechanism, as T ′

c > Sb, which is a contradic-
tion to the assumption that o1 and o2 are conflicting. The
theorem follows.

4. EVALUATION
In this section we evaluate our MVCC implementation in

our HyPer main-memory database system [21] that supports
SQL-92 queries and transactions (defined in a PL/SQL-like
scripting language [20]) and provides ACID guarantees.

HyPer supports both, column- and a row-based storage of
relations. Unless otherwise noted, we used the column-store
backend, enabled continuous garbage collection, and stored
the redo log in local memory. Redo log entries are generated
in memory and log entries are submitted in small groups
(group commit), which mitigates system call overheads and
barely increases transaction latency. We evaluated HyPer
with single-version concurrency control, our novel MVCC
model, and a MVCC model similar to [23], which we mim-

iced by updating whole records and not using VersionedPo-
sitions synopses in our MVCC model. We further experi-
mented with DBMS-X, a commercial main-memory DBMS
with a MVCC implementation similar to [23]. DBMS-X was
run in Windows 7 on our evaluation machine. Due to licens-
ing agreements we can not disclose the name of DBMS-X.

The experiments were executed on a 2-socket Intel Xeon
E5-2660v2 2.20 GHz (3 GHz maximum turbo) NUMA sys-
tem with 256 GB DDR3 1866 MHz memory (128 GB per
CPU) running Linux 3.13. Each CPU has 10 cores and a
25 MB shared L3 cache. Each core has a 32 KB L1-I and
L1-D cache as well as a 256 KB L2 cache.

4.1 Scan Performance
Initially we demonstrate the high scan performance of our

MVCC implementation. We implemented a benchmark sim-
ilar to the SIBENCH [7] benchmark and our bank accounts
example (cf., Figure 1). The benchmark operates on a single
relation that contains integer (key, value) pairs. The work-
load consists of update transactions which modify a (key,
value) pair by incrementing the value and a scan transac-
tion that scans the relation to sum up the values.

Figure 7 shows the per-core performance of scan trans-
actions on a relation with 100M (key, value) records. To
demonstrate the effect of scanning versioned records, we dis-
able the continuous garbage collection and perform updates
before scanning the relations. We vary both, the number of
dirty records and the number of versions per dirty record.
Additionally, we distinguish two cases: (i) the scan trans-
action is started before the updates (scan oldest) and thus
needs to undo the effects of the update transactions and
(ii) the scan transaction is started after the updates (scan
newest) and thus only needs to verify that the dirty records
are visible to the scan transaction. For all cases, the results
show that our MVCC implementation sustains the high scan
throughput of our single-version concurrency control imple-
mentation for realistic numbers of dirty records; and even
under high contention with multiple versions per record.

0.00001%
(10)

0.0001%
(100)

0.001%
(1k)

0.01%
(10k)

0.1%
(100k)

0M

250M

500M

750M

1000M

dirty records out of 100M

sc
a

n
th

ro
u

g
h

p
u

t
[r

ec
or

d
s/

s]

single-version system scan newest

scan oldest, 4 versions
dirty record

scan oldest, 16 versions
dirty record

realistic scenarios
with garbage collection

Figure 7: Scan performance with disabled garbage
collection: the scan newest transaction only needs to
verify the visibility of records while the scan oldest
transaction needs to undo updates.

0.00001%
(10)

0.0001%
(100)

0.001%
(1k)

0.01%
(10k)

0.1%
(100k)

0M

250M

500M

750M

1000M

dirty records out of 100M

sc
a

n
th

ro
u

g
h

p
u

t
[r

ec
or

d
s/

s]

single-version system MVCC, no VP

MVCC, VP s = 210 MVCC, VP s = 24

MVCC, VP s = 216

5.5× improvement

Figure 8: Effect of VersionedPositions (VP) syn-
opses per s records on scan performance

To validate our assumptions for the number of dirty records
and versions we consider Amazon.com as an example. 6.9
million copies of Harry Potter and the Half-Blood Prince,
one of the best-selling books of all time, were sold within
the first 24 hours in the United States. Even if we make
the highly pessimistic assumptions that all books are sold
through Amazon within 20 hours of that day and that Ama-
zon operates only six warehouses, 16 copies of that book are
sold per warehouse per second. Our experiment suggests
that in order to measure a significant drop in scan perfor-
mance there need to be hundreds of thousands of such best-
selling items and a transaction that is open for a long period
of time. Remember that in this case the long-running trans-
action can be aborted and restarted on a snapshot [29].

Figure 8 shows the performance effect of having Versioned-
Positions synopses (see Section 2.6) on scan performance.
Our implementation maintains VersionedPositions per 1024
records. The experiment suggests that increasing or decreas-
ing the number of records per VersionedPositions degrades
scan performance. Compared to not using VersionedPosi-
tions at all, scan performance is improved by more than
5.5×. 1024 records seems to be a sweetspot where the size
of the VersionedPositions vector is still reasonable and the
synopses already encode meaningful ranges, i.e., ranges that

0%
(0)

0.0001%
(100)

0.001%
(1k)

0.01%
(10k)

0.1%
(100k)

0%
25%
50%
75%

100%

dirty records out of 100M

cy
cl

es

scan retrieve version

find first versioned find first unversioned

Figure 9: Cycle breakdowns of scan-oldest transac-
tions that need to undo 4 updates per dirty record

include mostly modified records. A breakdown of CPU cy-
cles in Figure 9 shows that our MVCC functions are very
cheap for realistic numbers of versioned records. We mea-
sured 2.8 instructions per cycle (IPC) during the scans.

We further compared the scan performance of our MVCC
implementation to DBMS-X. DBMS-X achieves a scan speed
of 7.4M records/s with no dirty records and 2.5M records/s
with 10k dirty records (> 100× slower than our MVCC im-
plementation). Of course, we “misused” DBMS-X with its
point-query-only-optimized model for large full-table scans,
which would be necessary for analytical transactions. The
Hekaton model is only optimized for point queries and per-
forms all accesses through an index, which severely degrades
performance for scans-based analytics.

4.2 Insert/Update/Delete Benchmarks
We also evaluated the per-core performance of insert, up-

date, and “delete and insert” (delin) operations on a relation
with 10 integer attributes and 100M records. As expected,
compared to our single-version concurrency control imple-
mentation (5.9M inserts/s, 3.4M updates/s, 1.1M delins/s),
performance with our MVCC implementation is slightly de-
graded due to visibility checks and the maintenance of the
VersionVector and the VersionedPositions (4M inserts/s,
2M updates/s, 1M delins/s). The number of logically con-
current active transactions, however, has no performance
impact. As the newest version is stored in-place and the
version record of the previous version is inserted at the be-
ginning of the version chain, performance of updates is also
independent of the total number of versions.

4.3 TPC-C and TATP Results
TPC-C is a write-heavy benchmark and simulates the

principal activities of an order-entry environment. Its work-
load mix consists of 8% read-only transactions and 92%
write transactions. Some of the transactions in the TPC-C
perform aggregations and reads with range predicates. Fig-
ure 10(a) shows the per-core performance of our MVCC im-
plementation for the TPC-C benchmark with 5 warehouses
and no think times. Compared to our single-version concur-
rency control implementation, our MVCC implementation
costs around 20% of performance. Still, more than 100k
transactions/s are processed. This is true for our column-
and a row-based storage backends. We also compared these
numbers to a 2PL implementation in HyPer and a MVCC
model similar to [23]. 2PL is prohibitively expensive and
achieves a ∼5× smaller throughput. The MVCC model
of [23] achieves a throughput of around 50k transactions/s.

column-store row-store
0

50K

100K

150K

th
ro

u
g

h
p

u
t

[T
X

/
s]

(a) HyPer with single-version concur-
rency control (), our MVCC model
(), and a MVCC model that mimics
the behavior of [23] by updating whole
records and not using VersionedPosi-
tions ()

0% 20% 40% 60% 80% 100%
0.0×
0.2×
0.4×
0.6×
0.8×
1.0×

read-heavy top-customer transactions

th
ro

u
g

h
p

u
t

n
or

m
a

li
ze

d
to

S
I

SI

SR-AL

SR-RL

(b) throughput of interleaved transactions
under serializability with attribute- (SR-
AL) and record-level predicate logs (SR-
RL) relative to SI throughput for a vary-
ing percentage of read-heavy top-customer
transactions in the workload mix

5 10 15 20 25 30
0%

1%

2%

3%

4%

5%

number of warehouses

C
C

a
b

or
t

ra
te

SI

SR-AL

SR-RL

(c) concurrency control abort rate
running interleaved transactions with
a varying number of warehouses un-
der snapshot isolation (SI) and serial-
izability with attribute- (SR-AL) and
record-level predicate logs (SR-RL)

Figure 10: Single-threaded TPC-C experiments with a default of 5 warehouses

1 2 4 6 8 10 12 14 16 18 20
0

200K

400K

600K

800K

1M

number of threads (MPL)

th
ro

u
g

h
p

u
t

[T
X

/
s] no log shipping

RDMA log shipping

(a) scalability

0% 5% 10% 15% 20% 25%
0

200K

400K

600K

800K

1M

partition-crossing transactions

th
ro

u
g

h
p

u
t

[T
X

/
s] original TPC-C

(b) 20 threads, varying contention

0% 20% 40% 60% 80% 100%
0

200K

400K

600K

800K

1M

read-only transactions

th
ro

u
g

h
p

u
t

[T
X

/
s] original TPC-C

(c) 20 threads, impact of read-only TX

Figure 11: Multi-threaded TPC-C experiments with 20 warehouses in HyPer with our MVCC model

We further executed the TPC-C with multiple threads.
Like in H-Store [19]/VoltDB, we partition the database ac-
cording to warehouses. Partitions are assigned to threads
and threads are pinned to cores similar to the DORA sys-
tem [32]. These threads process transactions that primar-
ily access data belonging to their partition. Unlike DORA,
partition-crossing accesses, which, e.g., occur in 11% of the
TPC-C transactions, are carried out by the primary thread
to which the transaction was assigned. The scalability ex-
periment (see Figure 11(a)) shows that our system scales
near linearly up to 20 cores. Going beyond 20 cores might
require the reduction of global synchronization like in the
SILO system [41]. We further varied the contention on the
partitions by varying the percentage of partition-crossing
transactions as shown in Figure 11(b). Finally, as shown
in Figure 11(c), we also measured the impact of read-only
transactions and proportionally varied the percentage of the
two read-only transactions in the workload mix.

Figure 11(a) also shows the scalability of HyPer when
shipping the redo log using remote direct memory accesses
(RDMA) over Infiniband. RDMA-based log shipping gen-
erates an overhead of 17% with 20 threads. Our evalua-
tion system has a Mellanox ConnectX-3 Infiniband network
adapter, which operates at 4×QDR. The maximum write
bandwidth of our setup is 3.5 GB/s with a latency of 1.3µs.
This bandwidth is sufficient to ship the redo log entries: for
100k TPC-C transactions we generate 85 MB of redo log
entries. In our setup, the receiving node can act as a high-
availability failover but could also write the log to disk.

The Telecommunication Application Transaction Process-
ing (TATP) benchmark simulates a typical telecommunica-
tions application. The workload mix consists of 80% read-

only transactions and 20% write transactions. Thereby, the
read transactions all perform point accesses and records are
mostly updated as a whole. Thus, the TATP benchmark is
a best-case scenario for the MVCC model of [23]. We ran
the benchmark with a scale-factor of 1M subscribers. Com-
pared to running the benchmark with single-version con-
currency control (421,940 transactions/s), our MVCC im-
plementation creates just a tiny overhead (407,564 transac-
tions/s). As expected, the mimicked MVCC model of [23]
also performs quite well in this benchmark, but still trails
performance of our MVCC implementation by around 20%
(340,715 transactions/s).

4.4 Serializability
To determine the cost of our serializability validation ap-

proach (cf., Section 2.3), we first measured the cost of pred-
icate logging in isolation from predicate validation by run-
ning the TPC-C and TATP benchmarks each in a single
serial stream. Without predicate logging, i.e., under SI,
we achieve a TPC-C throughput of 112,610 transactions/s,
with record-level predicate logging (SR-RL) 107,365 transac-
tions/s, and with attribute-level predicate logging (SR-AL)
105,030 transactions/s. This means that there is a mere 5%
overhead for SR-RL and a mere 7% overhead for SR-AL. For
the TATP benchmark, we measured an overhead of only 1%
for SR-RL and 2% for SR-AL. We also measured the predi-
cate logging overhead for the mostly read-only TPC-H deci-
sion support benchmark, which resulted in an even smaller
overhead. In terms of size, predicate logs generated by our
implementation are quite small. Unlike other serializable
MVCC implementations, we do not need to track the entire
read set of a transaction. To illustrate the difference in size

imagine a top-customer transaction on the TPC-C schema
that, for a specific warehouse and district, retrieves the cus-
tomer with the highest account balance and a good credit
rating (GC) and performs a small update:

select
c_w_id, c_d_id, max(c_balance)

from
customer

where
c_credit = ’GC’
and c_w_id = :w_id
and c_d_id = :d_id

group by
c_w_id, c_d_id

update ...

For such a query, serializable MVCC models that need to
track the read set then have to either copy all read records
or set a flag (e.g., the SIREAD lock in PostgreSQL [34]). If
we assume that at least one byte per read record is needed for
book-keeping, then these approaches need to track at least
3 KB of data (a district of a warehouse serves 3k customers
in TPC-C). Our SR-AL on the other hand just stores the
read attributes and the aggregate that has been read which
is less than 100 bytes. This is 30× less than what traditional
read set book-keeping consumes; and for true OLAP-style
queries that read a lot of data, predicate logging saves even
more. E.g., the read set of an analytical TPC-H query usu-
ally comprises millions of records and tracking the read set
can easily consume multiple MBs of space.

To determine the cost of predicate validation, we again
ran the TPC-C benchmark but this time interleaved trans-
actions (by decomposing the transactions into smaller tasks)
such that transactions are running logically concurrent, which
makes predicate validation necessary. We further added the
aforementioned top-customer transaction to the workload
mix and varied its share in the mix from 0% to 100%. The
results are shown in Figure 10(b). As TPC-C transactions
are very short, it would be an option to skip the step of
building the predicate tree and instead just apply all the
predicates as-is and thus make predicate validation much
faster. However, the predicate tree has much better asymp-
totic behavior, and is therefore much faster and more robust
when transaction complexity grows. We therefore use it all
the time instead of optimizing for very cheap transactions.
And the figure also shows that with more read-only trans-
actions in the workload mix (as it is the case in real-world
workloads [33]), the overhead of serializability validation al-
most disappears. Building the predicate trees takes between
2µs and 15µs for the TPC-C transactions on our system;
and between 4µs and 24µs for the analytical TPC-H queries
(9.5µs geometric mean). In comparison to traditional vali-
dation approaches that repeat all reads, our system has, as
mentioned before, a much lower book-keeping overhead. A
comparison of validation times by themselves is more com-
plicated. Validation time in traditional approaches depends
on the size of the read set of the committing transaction |R|
and how fast reads can be repeated (usually scan speed and
index lookup speed); in our approach, it mostly depends
on the size of the write set |W | that has been committed
during the runtime of the committing transaction. In our
system, checking the predicates of a TPC-C transaction or
a TPC-H query against a versioned record that has been
reconstructed from undo buffers is a bit faster than an in-
dex lookup. In general, our approach thus favors workloads

where |R| ≥ |W |. In our opinion this is mostly the case, as
modern workloads tend to be read-heavy [33] and the time
that a transaction is active tends to be short (long-running
transactions would be deferred to a “safe snapshot”).

Finally, we evaluated the concurrency control abort rates,
i.e., the aborts caused by concurrency control conflicts, of
our MVCC implementation in HyPer. We again ran TPC-C
with logically interleaved transactions and varied the num-
ber of TPC-C warehouses. As the TPC-C is largely par-
titionable by warehouse, the intuition is that concurrency
control conflicts are reduced with an increasing number of
warehouses. The results are shown in Figure 10(c). We
acknowledge that TPC-C does not show anomalies under
SI [11], but of course the database system does not know
this, and this benchmark therefore tests for false positive
aborts. The aborts under SI are “real” conflicts, i.e., two
transaction try to modify the same data item concurrently.
Serializability validation with SR-AL creates almost no false
positive aborts. The only false positive aborts stem from the
minimum (min) aggregation in delivery, as it sometimes con-
flicts with concurrent inserts. Predicate logging of minimum
and maximum aggregates is currently not implemented in
our system but can easily be added in the future. SR-RL
creates more false positives than SR-AL, because reads are
not only checked against updated attributes but rather any
change to a record is considered a conflict, even though the
updated attribute might not even have been read by the
original transaction.

5. RELATED WORK
Transaction isolation and concurrency control are among

the most fundamental features of a database management
system. Hence, several excellent books and survey papers
have been written on this topic in the past [42, 3, 2, 38]. In
the following we further highlight three categories of work
that are particularly related to this paper, most notably
multi-version concurrency control and serializability.

5.1 Multi-Version Concurrency Control
Multi-Version Concurrency Control (MVCC) [42, 3, 28]

is a popular concurrency control mechanism that has been
implemented in various database systems because of the de-
sirable property that readers never block writers. Among
these DBMSs are commercial systems such as Microsoft SQL
Server’s Hekaton [8, 23] and SAP HANA [10, 37] as well as
open-source systems such as PostgreSQL [34].

Hekaton [23] is similar to our implementation in that it
is based on a timestamp-based optimistic concurrency con-
trol [22] variant of MVCC and uses code generation [12]
to compile efficient code for transactions at runtime. In
the context of Hekaton, Larson et al. [23] compared a pes-
simistic locking-based with an optimistic validation-based
MVCC scheme and proposed a novel MVCC model for main-
memory DBMSs. Similar to what we have seen in our exper-
iments, the optimistic scheme performs better in their eval-
uation. In comparison to Hekaton, our serializable MVCC
model does not update records as a whole but in-place and
at the attribute-level. Further, we do not restrict data ac-
cesses to index lookups and optimized our model for high
scan speeds that are required for OLAP-style transactions.
Finally, we use a novel serializability validation mechanism
based on an adaptation of precision locking [17]. Lomet et
al. [27] propose another MVCC scheme for main-memory

database systems where the main idea is to use ranges of
timestamps for a transaction. In contrast to classical MVCC
models, we previously proposed using virtual memory snap-
shots for long-running transactions [29], where updates are
merged back into the database at commit-time. Snapshot-
ting and merging, however, can be very expensive depending
on the size of the database.

Hyder [5, 4] is a data-sharing system that stores indexed
records as a multi-version log-structured database on shared
flash storage. Transaction conflicts are detected by a meld
algorithm that merges committed updates from the log into
the in-memory DBMS cache. This architecture promises
to scale out without partitioning. While our MVCC model
uses the undo log only for validation of serializability viola-
tions, in Hyder, the durable log is the database. In contrast,
our implementation stores data in a main-memory row- or
column-store and writes a redo log for durability. Octo-
pusDB [9] is another DBMS that uses the log as the database
and proposes a unification of OLTP, OLAP, and streaming
databases in one system.

5.2 Serializability
In contrast to PostgreSQL and our MVCC implementa-

tion, most other MVCC-based DBMSs only offer the weaker
isolation level Snapshot Isolation (SI) instead of serializabil-
ity. Berenson et al. [2], however, have shown that there exist
schedules that are valid under SI but are non-serializable. In
this context, Cahill and Fekete et al. [7, 11] developed a the-
ory of SI anomalies. They further developed the Serializable
Snapshot Isolation (SSI) approach [7], which has been im-
plemented in PostgreSQL [34]. To guarantee serializability,
SSI tracks commit dependencies and tests for “dangerous
structures” consisting of rw-antidependencies between con-
current transactions. Unfortunately this requires keeping
track of every single read, similar to read-locks, which can
be quite expensive for large read transactions. In contrast
to SSI, our MVCC model proposes a novel serializability
validation mechanism based on an adaptation of precision
locking [17]. Our approach does not track dependencies but
read predicates and validates the predicates against the undo
log entries, which are retained for as long as they are visible.

Jorwekar et al. [18] tackled the problem of automatically
detecting SI anomalies. [14] proposes a scalable SSI imple-
mentation for multi-core CPUs. Checking updates against a
predicate space is related to SharedDB [13], which optimizes
the processing of multiple queries in parallel.

5.3 Scalability of OLTP Systems
Orthogonal to logical transaction isolation, there is also

a plethora of research on how to scale transaction process-
ing out to multiple cores on modern CPUs. H-Store [19],
which has been commercialized as VoltDB, relies on static
partitioning of the database. Transactions that access only a
single partition are then processed serially and without any
locking. Jones et al. [16] describe optimizations for partition-
crossing transactions. Our HyPer [21] main-memory DBMS
optimizes for OLTP and OLAP workloads and follows the
partitioned transaction execution model of H-Store. Prior
to our MVCC integration, HyPer, just like H-Store, could
only process holistic pre-canned transactions. With the se-
rializable MVCC model introduced in this work, we provide
a logical transaction isolation mechanism that allows for in-
teractive and sliced transactions.

Silo [41] proposes a scalable commit protocol that guar-
antees serializability. To achieve good scalability on modern
multi-core CPUs, Silo’s design is centered around avoiding
most points of global synchronization. The proposed tech-
niques can be integrated into our MVCC implementation in
order to reduce global synchronization, which could allow
for better scalability. Pandis et al. [32] show that the cen-
tralized lock manager of traditional DBMSs is often a scala-
bility bottleneck. To solve this bottleneck, they propose the
DORA system, which partitions a database among phys-
ical CPU cores and decomposes transactions into smaller
actions. These are then assigned to threads that own the
data needed for the action, such that the interaction with
the lock manager is minimized during transaction process-
ing. Very lightweight locking [35] reduces the lock-manager
overhead by co-locating lock information with the records.

The availability of hardware transactional memory (HTM)
in recent mainstream CPUs enables a new promising trans-
action processing model that reduces the substantial over-
head from locking and latching [24]. HTM further allows
multi-core scalability without statically partitioning the da-
tabase [24]. In future work we thus intend to employ HTM
to efficiently scale out our MVCC implementation, even in
the presence of partition-crossing transactions.

Deterministic database systems [39, 40] propose the exe-
cution of transactions according to a pre-defined serial order.
In contrast to our MVCC model transactions need to be
known beforehand, e.g., by relying on holistic pre-canned
transactions, and do not easily allow for interactive and
sliced transactions. In the context of distributed DBMSs,
[6] proposes a middleware for replicated DBMSs that adds
global one-copy serializability for replicas that run under SI.

6. CONCLUSION
The multi-version concurrency control (MVCC) imple-

mentation presented in this work is carefully engineered to
accommodate high-performance processing of both, transac-
tions with point accesses as well as read-heavy transactions
and even OLAP scenarios. For the latter, the high scan
performance of single-version main-memory database sys-
tems was retained by an update-in-place version mechanism
and by using synopses of versioned record positions, called
VersionedPositions. Furthermore, our novel serializabiliy
validation technique that checks the before-image deltas in
undo buffers against a committing transaction’s predicate
space incurs only a marginal space and time overhead —
no matter how large the read set is. This results in a very
attractive and efficient transaction isolation mechanism for
main-memory database systems. In particular, our serial-
izable MVCC model targets database systems that support
OLTP and OLAP processing simultaneously and in the same
database, such as SAP HANA [10, 37] and our HyPer [21]
system, but could also be implemented in high-performance
transactional systems that currently only support holistic
pre-canned transactions such as H-Store [19]/VoltDB. From
a performance perspective, we have shown that the inte-
gration of our MVCC model in our HyPer system achieves
excellent performance, even when maintaining serializability
guarantees. Therefore, at least from a performance perspec-
tive, there is little need to prefer snapshot isolation over full
serializability any longer. Future work focusses on better
single-node scalability using hardware transactional mem-
ory [24] and the scale-out of our MVCC model [30].

7. REFERENCES
[1] A. Adya, B. Liskov, and P. O’Neil. Generalized

isolation level definitions. In ICDE, 2000.
[2] H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J.

O’Neil, et al. A Critique of ANSI SQL Isolation
Levels. In SIGMOD, 1995.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley Longman, 1986.

[4] P. A. Bernstein, C. W. Reid, and S. Das. Hyder - A
Transactional Record Manager for Shared Flash. In
CIDR, 2011.

[5] P. A. Bernstein, C. W. Reid, M. Wu, and X. Yuan.
Optimistic Concurrency Control by Melding Trees.
PVLDB, 4(11), 2011.

[6] M. A. Bornea, O. Hodson, S. Elnikety, and A. Fekete.
One-Copy Serializability with Snapshot Isolation
under the Hood. In ICDE, 2011.

[7] M. J. Cahill, U. Röhm, and A. D. Fekete. Serializable
Isolation for Snapshot Databases. TODS, 34(4), 2009.

[8] C. Diaconu, C. Freedman, E. Ismert, P.-Å. Larson,
P. Mittal, et al. Hekaton: SQL Server’s
Memory-optimized OLTP Engine. In SIGMOD, 2013.

[9] J. Dittrich and A. Jindal. Towards a one size fits all
database architecture. In CIDR, 2011.

[10] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd,
S. Sigg, and W. Lehner. SAP HANA Database: Data
Management for Modern Business Applications.
SIGMOD Record, 40(4), 2012.

[11] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and
D. Shasha. Making Snapshot Isolation Serializable.
TODS, 30(2), 2005.

[12] C. Freedman, E. Ismert, and P.-Å. Larson.
Compilation in the Microsoft SQL Server Hekaton
Engine. DEBU, 37(1), 2014.

[13] G. Giannikis, G. Alonso, and D. Kossmann.
SharedDB: Killing One Thousand Queries with One
Stone. PVLDB, 5(6), 2012.

[14] H. Han, S. Park, H. Jung, A. Fekete, U. Röhm, et al.
Scalable Serializable Snapshot Isolation for Multicore
Systems. In ICDE, 2014.

[15] S. Héman, M. Zukowski, N. J. Nes, L. Sidirourgos,
and P. Boncz. Positional Update Handling in Column
Stores. In SIGMOD, 2010.

[16] E. P. Jones, D. J. Abadi, and S. Madden. Low
Overhead Concurrency Control for Partitioned Main
Memory Databases. In SIGMOD, 2010.

[17] J. R. Jordan, J. Banerjee, and R. B. Batman.
Precision Locks. In SIGMOD, 1981.

[18] S. Jorwekar, A. Fekete, K. Ramamritham, and
S. Sudarshan. Automating the Detection of Snapshot
Isolation Anomalies. In VLDB, 2007.

[19] R. Kallman, H. Kimura, J. Natkins, A. Pavlo,
A. Rasin, et al. H-store: A High-performance,
Distributed Main Memory Transaction Processing
System. PVLDB, 1(2), 2008.

[20] A. Kemper et al. Transaction Processing in the
Hybrid OLTP & OLAP Main-Memory Database
System HyPer. DEBU, 36(2), 2013.

[21] A. Kemper and T. Neumann. HyPer: A Hybrid
OLTP&OLAP Main Memory Database System Based
on Virtual Memory Snapshots. In ICDE, 2011.

[22] H. T. Kung and J. T. Robinson. On Optimistic
Methods for Concurrency Control. TODS, 6(2), 1981.

[23] P.-Å. Larson, S. Blanas, C. Diaconu, C. Freedman,
J. M. Patel, et al. High-Performance Concurrency
Control Mechanisms for Main-Memory Databases.
PVLDB, 5(4), 2011.

[24] V. Leis, A. Kemper, and T. Neumann. Exploiting
hardware transactional memory in main-memory
databases. In ICDE, 2014.

[25] J. Levandoski, D. Lomet, and S. Sengupta. The
Bw-Tree: A B-tree for New Hardware. In ICDE, 2013.

[26] Y. Li and J. M. Patel. BitWeaving: Fast Scans for
Main Memory Data Processing. In SIGMOD, 2013.

[27] D. Lomet, A. Fekete, R. Wang, and P. Ward.
Multi-Version Concurrency via Timestamp Range
Conflict Management. In ICDE, 2012.

[28] C. Mohan, H. Pirahesh, and R. Lorie. Efficient and
Flexible Methods for Transient Versioning of Records
to Avoid Locking by Read-only Transactions.
SIGMOD Record, 21(2), 1992.

[29] H. Mühe, A. Kemper, and T. Neumann. Executing
Long-Running Transactions in Synchronization-Free
Main Memory Database Systems. In CIDR, 2013.

[30] T. Mühlbauer, W. Rödiger, A. Reiser, A. Kemper, and
T. Neumann. ScyPer: Elastic OLAP Throughput on
Transactional Data. In DanaC, 2013.

[31] T. Neumann. Efficiently Compiling Efficient Query
Plans for Modern Hardware. PVLDB, 4(9), 2011.

[32] I. Pandis, R. Johnson, N. Hardavellas, and
A. Ailamaki. Data-oriented Transaction Execution.
PVLDB, 3, 2010.

[33] H. Plattner. The Impact of Columnar In-Memory
Databases on Enterprise Systems: Implications of
Eliminating Transaction-Maintained Aggregates.
PVLDB, 7(13), 2014.

[34] D. R. K. Ports and K. Grittner. Serializable Snapshot
Isolation in PostgreSQL. PVLDB, 5(12), 2012.

[35] K. Ren, A. Thomson, and D. J. Abadi. Lightweight
Locking for Main Memory Database Systems.
PVLDB, 6(2), 2012.

[36] M. Sadoghi, M. Canim, B. Bhattacharjee, F. Nagel,
and K. A. Ross. Reducing Database Locking
Contention Through Multi-version Concurrency.
PVLDB, 7(13), 2014.

[37] V. Sikka, F. Färber, W. Lehner, S. K. Cha, T. Peh,
et al. Efficient Transaction Processing in SAP HANA
Database: The End of a Column Store Myth. In
SIGMOD, 2012.

[38] A. Thomasian. Concurrency Control: Methods,
Performance, and Analysis. CSUR, 30(1), 1998.

[39] A. Thomson and D. J. Abadi. The Case for
Determinism in Database Systems. PVLDB, 3, 2010.

[40] A. Thomson, T. Diamond, S.-C. Weng, K. Ren,
P. Shao, and D. J. Abadi. Calvin: Fast Distributed
Transactions for Partitioned Database Systems. In
SIGMOD, 2012.

[41] S. Tu, W. Zheng, E. Kohler, B. Liskov, and
S. Madden. Speedy Transactions in Multicore
In-memory Databases. In SOSP, 2013.

[42] G. Weikum and G. Vossen. Transactional Information
Systems: Theory, Algorithms, and the Practice of
Concurrency Control and Recovery. Morgan
Kaufmann, 2002.

[43] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner,
A. Zeier, et al. SIMD-Scan: Ultra Fast in-Memory
Table Scan using on-Chip Vector Processing Units.
PVLDB, 2(1), 2009.

