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ABSTRACT

In the implementation of hosted business services, multi-
ple tenants are often consolidated into the same database
to reduce total cost of ownership. Common practice is to
map multiple single-tenant logical schemas in the applica-
tion to one multi-tenant physical schema in the database.
Such mappings are challenging to create because enterprise
applications allow tenants to extend the base schema, e.g.,
for vertical industries or geographic regions. Assuming the
workload stays within bounds, the fundamental limitation
on scalability for this approach is the number of tables the
database can handle. To get good consolidation, certain ta-
bles must be shared among tenants and certain tables must
be mapped into fixed generic structures such as Universal
and Pivot Tables, which can degrade performance.

This paper describes a new schema-mapping technique for
multi-tenancy called Chunk Folding, where the logical ta-
bles are vertically partitioned into chunks that are folded to-
gether into different physical multi-tenant tables and joined
as needed. The database’s “meta-data budget” is divided
between application-specific conventional tables and a large
fixed set of generic structures called Chunk Tables. Good
performance is obtained by mapping the most heavily-uti-
lized parts of the logical schemas into the conventional ta-
bles and the remaining parts into Chunk Tables that match
their structure as closely as possible. We present the re-
sults of several experiments designed to measure the efficacy
of Chunk Folding and describe the multi-tenant database
testbed in which these experiments were performed.
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Figure 1: Software Development Priorities

1. INTRODUCTION
In the traditional on-premises model for software, a busi-

ness buys applications and deploys them in a data center
that it owns and operates. The Internet has enabled an al-
ternative model – Software as a Service (SaaS) – where own-
ership and management of applications are outsourced to a
service provider. Businesses subscribe to a hosted service
and access it remotely using a Web browser and/or Web
Service clients. Hosted services have appeared for a wide
variety of business applications, including Customer Rela-
tionship Management (CRM), Supplier Relationship Man-
agement (SRM), Human Capital Management (HCM), and
Business Intelligence (BI). IDC estimates that the worldwide
revenue associated with SaaS reached $3.98 billion in 2006
and that it will reach $14.5 billion in 2011, representing a
compound annual growth rate (CAGR) of 30% [24].

Design and development priorities for SaaS differ greatly
from those for on-premises software, as illustrated in Fig-
ure 1. The focus of on-premises software is generally on
adding features, often at the expense of reducing total cost
of ownership. In contrast, the focus of SaaS is generally
on reducing total cost of ownership, often at the expense of
adding features. The primary reason for this is, of course,
that the service provider rather than the customer has to
bear the cost of operating the system. In addition, the re-
curring revenue model of SaaS makes it unnecessary to add
features in order to drive purchases of upgrades.

A well-designed hosted service reduces total cost of owner-
ship by leveraging economy of scale. The greatest improve-
ments in this regard are provided by a multi-tenant archi-
tecture, where multiple businesses are consolidated onto the
same operational system. Multi-tenancy invariably occurs
at the database layer of a service; indeed this may be the only
place it occurs since application servers for highly-scalable
Web applications are often stateless [14].

The amount of consolidation that can be achieved in a
multi-tenant database depends on the complexity of the ap-
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plication and the size of the host machine, as illustrated in
Figure 2. In this context, a tenant denotes an organiza-
tion with multiple users, commonly around 10 for a small to
mid-sized business. For simple Web applications like busi-
ness email, a single blade server can support up to 10,000
tenants. For mid-sized enterprise applications like CRM, a
blade server can support 100 tenants while a large cluster
database can go up to 10,000. While the total cost of owner-
ship of a database may vary greatly, consolidating hundreds
of databases into one will save millions of dollars per year.

One downside of multi-tenancy is that it can introduce
contention for shared resources [19], which is often alleviated
by forbidding long-running operations. Another downside is
that it can weaken security, since access control must be per-
formed at the application level rather than the infrastructure
level. Finally, multi-tenancy makes it harder to support ap-
plication extensibility, since shared structures are harder to
individually modify. Extensibility is required to build spe-
cialized versions of enterprise applications, e.g., for partic-
ular vertical industries or geographic regions. Many hosted
business services offer platforms for building and sharing
such extensions [21, 22, 26].

In general, multi-tenancy becomes less attractive as appli-
cation complexity increases. More complex applications like
Enterprise Resource Planning (ERP) and Financials require
more computational resources, as illustrated in Figure 2,
have longer-running operations, require more sophisticated
extensibility, and maintain more sensitive data. Moreover,
businesses generally prefer to maintain more administrative
control over such applications, e.g., determining when back-
ups, restores, and upgrades occur. More complex applica-
tions are of course suitable for single-tenant hosting.

1.1 Implementing Multi-Tenant Databases
In order to implement multi-tenancy, most hosted services

use query transformation to map multiple single-tenant log-
ical schemas in the application to one multi-tenant physi-
cal schema in the database. Assuming the workload stays
within bounds, the fundamental limitation on scalability for
this approach is the number of tables the database can han-
dle, which is itself dependent on the amount of available
memory. As an example, IBM DB2 V9.1 [15] allocates 4 KB
of memory for each table, so 100,000 tables consume 400 MB
of memory up front. In addition, buffer pool pages are allo-
cated on a per-table basis so there is great competition for
the remaining cache space. As a result, the performance on
a blade server begins to degrade beyond about 50,000 tables.
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Figure 3: Chunk Folding

The natural way to ameliorate this problem is to share
tables among tenants. However this technique can interfere
with a tenant’s ability to extend the application, as discussed
above. The most flexible solution is to map the logical tables
into fixed generic structures, such as Universal and Pivot
Tables [11]. Such structures allow the creation of an arbi-
trary number of tables with arbitrary shapes and thus do not
place limitations on consolidation or extensibility. In addi-
tion, they allow the logical schemas to be modified without
changing the physical schema, which is important because
many databases cannot perform DDL operations while they
are on-line. However generic structures can degrade perfor-
mance and, if they are not hidden behind the query trans-
formation layer, complicate application development.

Our experience is that the mapping techniques used by
most hosted services today provide only limited support for
extensibility and/or achieve only limited amounts of con-
solidation. In particular, simpler services on the left side
of Figure 2 tend to favor consolidation while more complex
services on the right side tend to favor extensibility.

1.2 Contributions of this Paper
This paper describes a new schema-mapping technique for

multi-tenancy called Chunk Folding, where the logical ta-
bles are vertically partitioned into chunks that are folded to-
gether into different physical multi-tenant tables and joined
as needed. The database’s “meta-data budget” is divided
between application-specific conventional tables and a large
fixed set of generic structures called Chunk Tables. As an
example, Figure 3 illustrates a case where the first chunk
of a row is stored in a conventional table associated with
the base entity Account, the second chunk is stored in a
conventional table associated with an extension for health
care, and the remaining chunks are stored in differently-
shaped Chunk Tables. Because Chunk Folding has a generic
component, it does not place limitations on consolidation or
extensibility and it allows logical schema changes to occur
while the database is on-line. At the same time, and in
contrast to generic structures that use only a small, fixed
number of tables, Chunk Folding attempts to exploit the
database’s entire meta-data budget in as effective a way as
possible. Good performance is obtained by mapping the
most heavily-utilized parts of the logical schemas into the
conventional tables and the remaining parts into Chunk Ta-
bles that match their structure as closely as possible.

This paper presents the results of several experiments de-
signed to measure the efficacy of Chunk Folding. First, we
characterize the performance degradation that results as a
standard relational database handles more and more tables.
This experiment is based on a multi-tenant database testbed
we have developed that simulates a simple hosted CRM ser-
vice. The workload contains daily create, read, update, and
delete (CRUD) operations, simple reporting tasks, and ad-
ministrative operations such as modifying tenant schemas.



The experiment fixes the number of tenants, the amount of
data per tenant, and the load on the system, and varies the
number of tables into which tenants are consolidated.

Our second experiment studies the performance of stan-
dard relational databases on OLTP queries formulated over
Chunk Tables. These queries can be large but have a sim-
ple, regular structure. We compare a commercial database
with an open source database and conclude that, due to dif-
ferences in the sophistication of their query optimizers, con-
siderably more care has to be taken in generating queries
for the latter. The less-sophisticated optimizer complicates
the implementation of the query-transformation layer and
forces developers to manually inspect plans for queries with
new shapes. In any case, with enough care, query optimiz-
ers can generate plans for these queries that are efficiently
processed. A goal of our on-going work is to compare the
penalty of reconstructing rows introduced by Chunk Folding
with the penalty for additional paging introduced by man-
aging lots of tables.

This paper is organized as follows. To underscore the im-
portance of application extensibility, Section 2 presents a
case study of a hosted service for project management. Sec-
tion 3 outlines some common schema-mapping techniques
for multi-tenancy, introduces Chunk Folding, and surveys
related work. Section 4 outlines our multi-tenant database
testbed. Section 5 describes our experiments with manag-
ing many tables. Section 6 describes our experiments with
queries over Chunk Tables. Section 7 summarizes the paper
and discusses future work.

2. THE CASE FOR EXTENSIBILITY
Extensibility is clearly essential for core enterprise appli-

cations like CRM and ERP. But it can also add tremendous
value to simpler business applications, like email and project
management, particularly in the collaborative environment
of the Web. To underscore this point, this section presents
a case study of a hosted business service called Conject [6].

Conject is a collaborative project-management environ-
ment designed for the construction and real estate indus-
tries. Users of the system include architects, contractors,
building owners, and building managers. Participants inter-
act in project workspaces, which contain the data and pro-
cesses associated with building projects. Within a project
workspace, participants can communicate using email, in-
stant messaging, white boards, and desktop sharing. All
discussions are archived for reference and to resolve any sub-
sequent legal disputes. Documents such as drawings can be
uploaded into a project workspace, sorted, selectively shared
among participants, and referenced in discussions. Tasks
may be defined and assigned to participants and the progress
of the project is tracked as tasks are completed. Integrated
reports can be issued for the control and documentation of
a project. Requests for bids can be created and bids can be
submitted, viewed, and accepted.

At present, Conject has about 6000 projects shared by
15,000 registered participants across 400 organizations. The
system maintains 2 TB of documents in a file-based store
and 20 GB of structured data in a commercial database.
Data is maintained in conventional, application-specific ta-
bles that are shared across projects, participants, and their
organizations. A single database instance on a 2.4 GHz dual-
core AMD Opteron 250 machine with 8 GB of memory man-
ages the full load of 50 million transactions per year.

In the future, Conject will support more sophisticated
business processes such as claim management, defect man-
agement, issue management, and decision tracking. Such
processes can vary greatly across projects and must be specif-
ically designed by the participants. Current plans are to
allow participants to associate an object with additional at-
tributes, a set of states, and allowable transitions between
those states. Participants will be able to save, reuse, and
share these configurations. To implement these features,
the current fixed database schema will have to be enhanced
to support extensibility using techniques such as the ones
discussed in this paper.

3. SCHEMA-MAPPING TECHNIQUES
This section outlines some common schema-mapping tech-

niques for multi-tenancy, introduces Chunk Folding, and
surveys related work. Figure 4 illustrates a running example
that shows various layouts for Account tables of three ten-
ants with IDs 17, 35, and 42. Tenant 17 has an extension
for the health care industry while tenant 42 has an extension
for the automotive industry.
Basic Layout. The most basic technique for implement-
ing multi-tenancy is to add a tenant ID column (Tenant) to
each table and share tables among tenants. This approach
provides very good consolidation but no extensibility. As a
result of the latter, it cannot represent the schema of our
running example and is not shown in Figure 4. This ap-
proach is taken by conventional Web applications, which
view the data as being owned by the service provider rather
than the individual tenants, and is used by many simpler
services on the left side of Figure 2.
Private Table Layout – Figure 4(a). The most basic way
to support extensibility is to give each tenant their own pri-
vate tables. In this approach, the query-transformation layer
needs only to rename tables and is very simple. Since the
meta-data is entirely managed by the database, there is no
overhead for meta-data in the data itself (the gray columns
in Figure 4). However only moderate consolidation is pro-
vided since many tables are required. This approach is used
by some larger services on the right side of Figure 2 when a
small number of tenants can produce sufficient load to fully
utilize the host machine.
Extension Table Layout – Figure 4(b). The above two
layouts can be combined by splitting off the extensions into
separate tables. Because multiple tenants may use the same
extensions, the extension tables as well as the base tables
should be given a Tenant column. A Row column must also
be added so the logical source tables can be reconstructed.
The two gray columns in Figure 4(b) represent the overhead
for meta-data in the data itself.

At run-time, reconstructing the logical source tables car-
ries the overhead of additional joins as well as additional
I/O if the row fragments are not clustered together. On the
other hand, if a query does not reference one of the tables,
then there is no need to read it in, which can improve per-
formance. This approach provides better consolidation than
the Private Table Layout, however the number of tables will
still grow in proportion to the number of tenants since more
tenants will have a wider variety of basic requirements.

This approach has its origins in the Decomposed Stor-
age Model [7], where an n-column table is broken up into
n 2-column tables that are joined through surrogate val-
ues. This model has then been adopted by column-oriented



Account17
Aid Name Hospital Beds

1 Acme St. Mary 135
2 Gump State 1042

Account35

Aid Name
1 Ball

Account42
Aid Name Dealers

1 Big 65

(a) Private Table Layout

AccountExt

Tenant Row Aid Name
17 0 1 Acme
17 1 2 Gump
35 0 1 Ball
42 0 1 Big

HealthcareAccount

Tenant Row Hospital Beds
17 0 St. Mary 135
17 1 State 1042

AutomotiveAccount

Tenant Row Dealers
42 0 65

(b) Extension Table Layout

Universal
Tenant Table Col1 Col2 Col3 Col4 Col5 Col6

17 0 1 Acme St. Mary 135 − −

17 0 2 Gump State 1042 − −

35 1 1 Ball − − − −

42 2 1 Big 65 − − −

(c) Universal Table Layout

Pivotint

Tenant Table Col Row Int
17 0 0 0 1
17 0 3 0 135
17 0 0 1 2
17 0 3 1 1042
35 1 0 0 1
42 2 0 0 1
42 2 2 0 65

Pivotstr

Tenant Table Col Row Str
17 0 1 0 Acme
17 0 2 0 St. Mary
17 0 1 1 Gump
17 0 2 1 State
35 1 1 0 Ball
42 2 1 0 Big

(d) Pivot Table Layout

Chunkint|str

Tenant Table Chunk Row Int1 Str1
17 0 0 0 1 Acme
17 0 1 0 135 St. Mary
17 0 0 1 2 Gump
17 0 1 1 1042 State
35 1 0 0 1 Ball
42 2 0 0 1 Big
42 2 1 0 65 −

(e) Chunk Table Layout

AccountRow

Tenant Row Aid Name
17 0 1 Acme
17 1 2 Gump
35 0 1 Ball
42 0 1 Big

ChunkRow

Tenant Table Chunk Row Int1 Str1
17 0 0 0 135 St. Mary
17 0 0 1 1042 State
42 2 0 0 65 −

(f) Chunk Folding

Figure 4: Account table and its extensions in differ-
ent layouts. (Gray columns represent meta-data.)

databases [4, 23], which leverage the ability to selectively
read in columns to improve the performance of analytics [23]
and RDF data [1]. The Extension Table Layout does not
partition tables all the way down to individual columns, but
rather leaves them in naturally-occurring groups. This ap-
proach has been used to map object-oriented schemas with
inheritance into the relational model [9].
Universal Table Layout – Figure 4(c). Generic structures
allow the creation of an arbitrary number of tables with ar-
bitrary shapes. A Universal Table is a generic structure
with a Tenant column, a Table column, and a large number
of generic data columns. The data columns have a flexi-
ble type, such as VARCHAR, into which other types can
be converted. The n-th column of each logical source table
for each tenant is mapped into the n-th data column of the
Universal Table. As a result, different tenants can extend
the same table in different ways. By keeping all of the values
for a row together, this approach obviates the need to recon-
struct the logical source tables. However it has the obvious
disadvantage that the rows need to be very wide, even for
narrow source tables, and the database has to handle many
null values. While commercial relational databases handle
nulls fairly efficiently, they nevertheless use some additional
memory. Perhaps more significantly, fine-grained support
for indexing is not possible: either all tenants get an index
on a column or none of them do. As a result of these is-
sues, additional structures must be added to this approach
to make it feasible.

This approach has its origins in the Universal Relation
[18], which holds the data for all tables and has every column
of every table. The Universal Relation was proposed as a
conceptual tool for developing queries and was not intended
to be directly implemented. The Universal Table described
in this paper is narrower, and thus feasible to implement,
because it circumvents typing and uses each physical column
to represent multiple logical columns.

There have been extensive studies of the use of generic
structures to represent semi-structured data. Florescu et al.
[11] describe a variety of relational representations for XML
data including Universal and Pivot Tables. Our work uses
generic structures to represent irregularities between pieces
of schema rather than pieces of data.
Pivot Table Layout – Figure 4(d). A Pivot Table is an
alternative generic structure in which each field of each row
in a logical source table is given its own row. In addition to
Tenant, Table, and Row columns as described above, a Pivot
Table has a Col column that specifies which source field a row
represents and a single data-bearing column for the value of
that field. The data column can be given a flexible type,
such as VARCHAR, into which other types are converted, in
which case the Pivot Table becomes a Universal Table for the
Decomposed Storage Model. A better approach however,
in that it does not circumvent typing, is to have multiple
Pivot Tables with different types for the data column. To
efficiently support indexing, two Pivot Tables can be created
for each type: one with indexes and one without. Each value
is placed in exactly one of these tables depending on whether
it needs to be indexed.

This approach eliminates the need to handle many null
values. However it has more columns of meta-data than
actual data and reconstructing an n-column logical source
table requires (n − 1) aligning joins along the Row column.
This leads to a much higher runtime overhead for interpret-



ing the meta-data than the relatively small number of joins
needed in the Extension Table Layout. Of course, like the
Decomposed Storage Model, the performance can benefit
from selectively reading in a small number of columns.

The Pathfinder query compiler maps XML into relations
using Pivot-like Tables [13]. Closer to our work is the re-
search on sparse relational data sets, which have thousands
of attributes, only a few of which are used by any object.
Agrawal et al. [2] compare the performance of Pivot Tables
(called vertical tables) and conventional horizontal tables in
this context and conclude that the former perform better
because they allow columns to be selectively read in. Our
use case differs in that the data is partitioned by tenant
into well-known dense subsets, which provides both a more
challenging baseline for comparison as well as more oppor-
tunities for optimization. Beckman et al. [3] also present a
technique for handling sparse data sets using a Pivot Table
Layout. In comparison to our explicit storage of meta-data
columns, they chose an “intrusive” approach which manages
the additional runtime operations in the database kernel.
Cunningham et al. [8] present an “intrusive” technique for
supporting general-purpose pivot and unpivot operations.
Chunk Table Layout – Figure 4(e). We propose a third
generic structure, called a Chunk Table, that is particularly
effective when the base data can be partitioned into well-
known dense subsets. A Chunk Table is like a Pivot Table
except that it has a set of data columns of various types,
with and without indexes, and the Col column is replaced
by a Chunk column. A logical source table is partitioned into
groups of columns, each of which is assigned a chunk ID and
mapped into an appropriate Chunk Table. In comparison to
Pivot Tables, this approach reduces the ratio of stored meta-
data to actual data as well as the overhead for reconstructing
the logical source tables. In comparison to Universal Tables,
this approach provides a well-defined way of adding indexes,
breaking up overly-wide columns, and supporting typing.
By varying the width of the Chunk Tables, it is possible to
find a middle ground between these extremes. On the other
hand, this flexibility comes at the price of a more complex
query-transformation layer.
Chunk Folding – Figure 4(f). We propose a technique
called Chunk Folding where the logical source tables are ver-
tically partitioned into chunks that are folded together into
different physical multi-tenant tables and joined as needed.
The database’s “meta-data budget” is divided between ap-
plication-specific conventional tables and a large fixed set of
Chunk Tables. For example, Figure 4(f) illustrates a case
where base Accounts are stored in a conventional table and
all extensions are placed in a single Chunk Table. In contrast
to generic structures that use only a small, fixed number of
tables, Chunk Folding attempts to exploit the database’s
entire meta-data budget in as effective a way as possible.
Good performance is obtained by mapping the most heavily-
utilized parts of the logical schemas into the conventional ta-
bles and the remaining parts into Chunk Tables that match
their structure as closely as possible.

A goal of our on-going work is to develop Chunk Fold-
ing algorithms that take into account the logical schemas of
tenants, the distribution of data within those schemas, and
the associated application queries. Because these factors can
vary over time, it should be possible to migrate data from
one representation to another on-the-fly.

4. THE MTD TESTBED
This section describes the configurable testbed we have

developed for experimenting with multi-tenant database im-
plementations. The testbed simulates the OLTP component
of a hosted CRM service. Conceptually, users interact with
the service through browser and Web Service clients. The
testbed does not actually include the associated application
servers, rather the testbed clients simulate the behavior of
those servers. The application is itself of interest because
it characterizes a standard multi-tenant workload and thus
could be used as the basis for a multi-tenant database bench-
mark.

The testbed is composed of several processes. The System
Under Test is a multi-tenant database running on a private
host. It can be configured for various schema-mapping lay-
outs and usage scenarios. A Worker process engages in mul-
tiple client sessions, each of which simulates the activities
of a single connection from an application server’s database
connection pool. Each session runs in its own thread and
gets its own connection to the target database. Multiple
Workers are distributed over multiple hosts.

The Controller task assigns actions and tenants to Work-
ers. Following the TPC-C benchmark [25], the Controller
creates a deck of “action cards” with a particular distribu-
tion, shuffles it, and deals cards to the Workers. The Con-
troller also randomly selects tenants, with an equal distri-
bution, and assigns one to each card. Finally, the Controller
collects response times and stores them in a Result Data-
base. The timing of an action starts when a Worker sends
the first request and ends when it receives the last response.

4.1 Database Layout
The base schema for the CRM application contains ten

tables as depicted in Figure 5. It is a classic DAG-structured
OLTP schema with one-to-many relationships from child to
parent. Individual users within a business (a tenant) are
not modeled, but the same tenant may engage in several
simultaneous sessions so data may be concurrently accessed.
Every table in the schema has a tenant-id column so that it
can be shared by multiple tenants.

Each of the tables contains about 20 columns, one of which
is the entity’s ID. Every table has a primary index on the
entity ID and a unique compound index on the tenant ID
and the entity ID. In addition, there are twelve indexes on
selected columns for reporting queries and update tasks. All
data for the testbed is synthetically generated.

In order to programmatically increase the overall number
of tables without making them too synthetic, multiple copies
of the 10-table CRM schema are created. Each copy should
be viewed as representing a logically different set of entities.
Thus, the more instances of the schema there are in the
database, the more schema variability there is for a given
amount of data.

In its present form, the testbed models the Extension Ta-
ble Layout with many base tables but no extension tables.
This is sufficient for the experiments on schema variability
presented in the next section. The testbed will eventually
offer a set of possible extensions for each base table.

4.2 Worker Actions
Worker actions include CRUD operations and reporting

tasks that simulate the daily activities of individual users.
The reporting tasks model fixed business activity monitor-



LineItem Product Case Contract

Lead Opportunity Asset Contact

Campaign Account

Figure 5: CRM Application Schema

Select Light (50%) Selects all attributes of a single entity or a small
set of entities as if they were to be displayed on an entity detail page
in the browser.
Select Heavy (15%) Runs one of five reporting queries that perform
aggregation and/or parent-child-rollup.
Insert Light (9.59%) Inserts one new entity instance into the data-
base as if it had been manually entered into the browser.
Insert Heavy (0.3%) Inserts several hundred entity instances into
the database in a batch as if they had been imported via a Web
Service interface.
Update Light (17.6%) Updates a single entity or a small set of
entities as if they had been modified in an edit page in the browser.
The set of entities is specified by a filter condition that relies on a
database index.
Update Heavy (7.5%) Updates several hundred entity instances that
are selected by the entity ID using the primary key index.
Administrative Tasks (0.01%) Creates a new instance of the 10-
table CRM schema by issuing DDL statements.

Figure 6: Worker Action Classes

ing queries, rather than ad-hoc business intelligence queries,
and are simple enough to run against an operational OLTP
system. Worker actions also include administrative opera-
tions for the business as a whole, in particular, adding and
deleting tenants. Depending on the configuration, such op-
erations may entail executing DDL statements while the sys-
tem is on-line, which may result in decreased performance
or even deadlocks for some databases. The testbed does
not model long-running operations because they should not
occur in an OLTP system, particularly one that is multi-
tenant.

To facilitate the analysis of experimental results, Worker
actions are grouped into classes with particular access char-
acteristics and expected response times. Lightweight actions
perform simple operations on a single entity or a small set of
entities. Heavyweight actions perform more complex opera-
tions, such as those involving grouping, sorting, or aggrega-
tion, on larger sets of entities. The list of action classes (see
Figure 6) specifies the distribution of actions in the Con-
troller’s card deck.

The testbed adopts a strategy for transactions that is con-
sistent with best practices for highly-scalable Web applica-
tions [16, 17]. The testbed assumes that neither browser
nor Web Service clients can demarcate transactions and that
the maximum granularity for a transaction is therefore the
duration of a single user request. Furthermore, since long-
running operations are not permitted, large write requests
such as cascading deletes are broken up into smaller indepen-
dent operations. Any temporary inconsistencies that result
from the visibility of intermediate states must be eliminated
at the application level. Finally, read requests are always
performed with a weak isolation level that permits unre-
peatable reads.

Schema

Variability

Number of

instances

Tenants per

instance

Total tables

0.0 1 10,000 10
0.5 5, 000 2 50, 000
0.65 6, 500 1 – 2 65, 000
0.8 8, 000 1 – 2 80, 000
1.0 10, 000 1 100, 000

Table 1: Schema Variability and Data Distribution

5. HANDLING MANY TABLES
The following section describes an experiment with our

multi-tenant database testbed which measures the perfor-
mance of a standard relational database as it handles more
and more tables. Conventional on-line benchmarks such as
TPC-C [25] increase the load on the database until response
time goals for various request classes are violated. In the
same spirit, our experiment varies the number of tables in
the database and measures the response time for various re-
quest classes. The testbed is configured with a fixed number
of tenants – 10,000 – a fixed amount of data per tenant –
about 1.4 MB – and a fixed workload – 40 client sessions.
The variable for the experiment is the number of instances
of the CRM schema in the database, which we called the
schema variability in Section 4.1.

The schema variability takes values from 0 (least variabil-
ity) to 1 (most variability) as shown in Table 1. For the
value 0, there is only one schema instance and it is shared
by all tenants, resulting in 10 total tables. At the other ex-
treme, the value 1 denotes a setup where all tenants have
their own private instance of the schema, resulting in 100,000
tables. Between these two extremes, tenants are distributed
as evenly as possible among the schema instances. For ex-
ample, with schema variability 0.65, the first 3,500 schema
instances have two tenants while the rest have only one.

The experiment was run on a DB2 database server with
a 2.8 GHz Intel Xeon processor and 1 GB of memory. The
database server was running a recent enterprise-grade Linux
operating system. The data was stored on an NFS appli-
ance that was connected with dedicated 2 GBit/s Ethernet
trunks. The Workers were placed on 20 blade servers with
a 1 GBit/s private interconnect.

The experiment was designed in a manner that increas-
ing the schema variability beyond 0.5 taxes the ability of
the database to keep the primary key index root nodes in
memory. Schema variability 0.5 has 50,000 tables, which at
4 KB per table for DB2 consumes about 200 MB of mem-
ory. The operating system consumes about 100 MB, leaving
about 700 MB for the database buffer pool. The page size
for all user data, including indexes, is 8 KB. The root nodes
of the 50,000 primary key indexes therefore require 400 MB
of buffer pool space. The buffer pool must also accommo-
date the actual user data and any additional index pages,
and the dataset for a tenant was chosen so that most of the
tables need more than one index page.

The raw data collected by the Controller was processed as
follows. First, the ramp-up phase during which the system
reached steady state was stripped off. Then rollups of the
results were taken across 30 minute periods for an hour,
producing two runs. This process was repeated three times,
resulting in a total of six runs. The results of the runs were
consistent and so only the first run is reported for each value
of the schema variability; see Table 2.



Metric Schema Variability

0.0 0.5 0.65 0.8 1.0

Baseline Compliance [%] 95.0 81.5 79.2 75.5 71.8
Throughput [1/min] 7,325.60 5,162.30 4,225.17 3,852.70 3,829.40

95% Response Time Select Light [ms] 370 766 747 846 1,000
Select Heavy [ms] 2,226 1,677 1,665 1,959 2,375
Insert Light [ms] 4,508 2,031 2,620 3,020 2,005
Insert Heavy [ms] 8,530 10,128 13,383 16,681 9,718
Update Light [ms] 428 1,160 1,403 1,719 2,049
Update Heavy [ms] 679 1,393 1,524 1,777 2,096

Bufferpool Hit Ratio Data [%] 95.53 93.89 94.58 94.54 94.12
Index [%] 97.46 89.13 88.57 86.69 83.07

Table 2: Experimental Results

0 0.5 0.65 0.8 1
50

60

70

80

90

100

Schema Variability

Query Percentage

(a) Baseline Compliance

0 0.5 0.65 0.8 1
0

2000

4000

6000

8000

Schema Variability

Transactions/Minute

(b) Database Throughput

0 0.5 0.65 0.8 1
80

85

90

95

100

Schema Variability

Buffer Hit Ratio (%)

Data

Index

(c) Buffer Hit Ratios

Figure 7: Results for Various Schema Variability

The first line of this table shows the Baseline Compli-
ance, which was computed as follows. The 95% quantiles
were computed for each query class of the schema variabil-
ity 0.0 configuration: this is the baseline. Then for each
configuration, the percentage of queries within the base-
line were computed. The lower the baseline compliance,
the higher the percentage of queries whose response time is
above the baseline. Per definition, the baseline compliance
of the schema variability 0.0 configuration is 95%. Starting
around schema variability 0.65 the high response times are
no longer tolerable. The baseline compliance is also depicted
in Figure 7(a). The second line of Table 2 is the database
throughput in actions per minute, computed as an average
over the 30 minute period. The throughput is also depicted
in Figure 7(b).

The middle part of Table 2 shows the 95% quantiles for
each query class. For the most part, the response times grow
with increasing schema variability. We hypothesize that the
exceptions occur for the following reasons. First, for low
schema variability, there is more sharing among tenants and
therefore more contention for longer running queries and tu-
ple inserts. Since the heavyweight select queries do aggrega-
tion, sorting, or grouping, multiple parallel query instances
have impact on each other. The query execution plans show
that these queries do a partial table scan with some locking,
so the performance for this class degrades. For insert op-
erations, the database locks the pages where the tuples are
inserted, so concurrently running insert operations have to
wait for the release of these locks. This effect can be seen es-

pecially for the lightweight insert operations. Second, there
is a visible performance improvement for the insert opera-
tions at schema variability 1.0, where the database outper-
forms all previous configurations. We hypothesize that this
behavior is due to the fact that DB2 is switching between
the two insert methods it provides. The first method finds
the most suitable page for the new tuple, producing a com-
pactly stored relation. The second method just appends the
tuple to the end of the last page, producing a sparsely stored
relation.

The last two lines of Table 2 show the buffer pool hit ra-
tio for the data and the indexes. As the schema variability
increases, the hit ratio for indexes decreases while the hit ra-
tio for data remains fairly constant. Inspection of the query
plans shows that the queries primarily use the indexes for
processing. The hit ratios are also depicted in Figure 7(c).

These experimental results are consistent with anecdotal
practical experience using MySQL and the InnoDB storage
engine. The hosted email service Zimbra [27] initially exper-
imented with a design in which each mailbox was given its
own tables [5]. When thousands of mailboxes were loaded on
a blade server, performance became unacceptably slow be-
cause pages kept getting swapped out of the buffer pool. In
addition, when a table is first accessed, InnoDB runs a set of
random queries to determine the cardinality of each index,
which resulted in a large amount of data flowing through
the system. The performance problems disappeared when
tables were shared among tenants.



6. QUERYING CHUNK TABLES
This section describes the transformations needed to pro-

duce queries over Chunk Tables by considering the simpler
case of Pivot Tables. The generalization to Chunk Tables is
straight-forward. This section also discusses the behavior of
commercial and open-source databases on those queries.

6.1 Transforming Queries
In the running example of Figure 4, consider the following

query from Tenant 17 over the Private Table Layout:

SELECT Beds

FROM Account17
WHERE Hospital=‘State’ .

(Q1)

The most generic approach to formulating this query over
the Pivot Tables Pivotint and Pivotstr is to reconstruct the
original Account17 table in the FROM clause and then patch
it into the selection. Such table reconstruction queries gen-
erally consists of multiple equi-joins on the column Row. In
the case of Account17, three aligning self-joins on the Pivot

table are needed to construct the four-column wide relation.
However in Query Q1, the columns Aid and Name do not ap-
pear and evaluation of two of the three mapping joins would
be wasted effort.

We therefore devise the following systematic compilation
scheme that proceeds in four steps.

1. All table names and their corresponding columns in
the logical source query are collected.

2. For each table name, the Chunk Tables and the meta-
data identifiers that represent the used columns are
obtained.

3. For each table, a query is generated that filters the
correct columns (based on the meta-data identifiers
from the previous step) and aligns the different chunk
relations on their Row columns. The resulting queries
are all flat and consist of conjunctive predicates only.

4. Each table reference in the logical source query is ex-
tended by its generated table definition query.

Query Q1 uses the columns Hospital and Beds of table
Account17. The two columns can be found in relations Pivotstr

and Pivotint, respectively. For both columns, we know the
values of the Tenant, Table, and Col columns. The query to
reconstruct Account17 checks all these constraints and aligns
the two columns on their rows:

(SELECT s.Str as Hospital, i.Int as Beds

FROM Pivotstr s, Pivotint i

WHERE s.Tenant = 17

AND i.Tenant = 17

AND s.Table = 0 AND s.Col = 2

AND i.Table = 0 AND i.Col = 3

AND s.Row = i.Row) .

(Q1Account17)

To complete the transformation, Query Q1Account17 is then
patched into the FROM clause of Query Q1 as a nested sub-
query.

When using Chunk Tables instead of Pivot Tables, the re-
construction of the logical Account17 table is nearly identical
to the Pivot Table case. In our example, the resulting FROM

clause is particularly simple because both requested columns
reside in the same chunk (Chunk = 1):

SELECT Beds

FROM (SELECT Str1 as Hospital,

Int1 as Beds

FROM Chunkint|str

WHERE Tenant = 17

AND Table = 0

AND Chunk = 1) AS Account17
WHERE Hospital=‘State’ .

(Q1Chunk)

The structural changes to the original query can be sum-
marized as follows.

• An additional nesting due to the expansion of the table
definitions is introduced.

• All table references are expanded into join chains on
the base tables to construct the references.

• All base table accesses refer to the columns Tenant,
Table, Chunk, and in case of aligning joins, to column
Row.

We argue in the following that these changes do not nec-
essarily need to affect the query response time.
Additional Nesting. Fegaras and Maier proved in [10]
(Rule N8) that the nesting we introduced in the FROM clause
– queries with only conjunctive predicates – can always be
flattened by a query optimizer. If a query optimizer does
not implement such a rewrite (as we will see in Section 6.2)
it will first generate the full relation before applying any fil-
tering predicates – a clear performance penalty. For such
databases, we must directly generate the flattened queries.
For more complex queries (with e.g., GROUP BY clauses) the
transformation is however not as clean as the technique de-
scribed above.
Join Chains. Replacing the table references by chains of
joins on base tables may be beneficial as long as the costs for
loading the chunks and applying the index-supported (see
below) join are cheaper than reading the wider conventional
relations. The observation that different chunks are often
stored in the same relation (as in Figure 4(e)) makes this
scenario even more likely as the joins would then turn into
self-joins and we may benefit from a higher buffer pool hit
ratio.
Base Table Access. As all table accesses refer to the meta-
data columns Tenant, Table, Chunk, and Row we should con-
struct indexes on these columns. This turns every data ac-
cess into an index-supported one. Note that a B-tree index
look up in a (Tenant, Table, Chunk, Row) index is basically a
partitioned B-tree lookup [12]. The leading B-tree columns
(here Tenant and Table) are highly redundant and only par-
tition the B-tree into separate smaller B-trees (partitions).
Prefix compression makes sure that these indexes stay small
despite the redundant values.

6.2 Evaluating Queries
To assess the query performance of standard databases on

queries over Chunk Tables, we devised a simple experiment
that compares a conventional layout with equivalent Chunk
Table layouts of various widths. The first part of this section
will describe the schema and the query we used, the second
part outlines the experiments we conducted.



Test Schema. The schema for the conventional layout con-
sists of two tables Parent and Child:

Parent
id col1 col2 . . . col90

Child
id parent col1 col2 . . . col90

(Conventional)

Both tables have an id column and 90 data columns that
are evenly distributed between the types INTEGER, DATE, and
VARCHAR(100). In addition, table Child has a foreign key
reference to Parent in column parent.

The Chunk Table layouts each have two tables: ChunkData

storing the grouped data columns and ChunkIndex storing the
key id and foreign key parent columns of the conventional
tables. In the different Chunk Table layouts, the ChunkData

table varied in width from 3 data columns (resulting in 30
groups) to 90 data columns (resulting in a single group) in
3 column increments. Each set of three columns had types
INTEGER, DATE, and VARCHAR(100) allowing groups from the
conventional table to be tightly packed into the Chunk Ta-
ble. In general, the packing may not be this tight and a
Chunk Table may have nulls, although not as many as a
Universal Table. The ChunkIndex table always had a single
INTEGER column.

As an example, Chunk6 shows a Chunk Table instance of
width 6 where each row of a conventional table is split into
15 rows in ChunkData and 1 (for parents) or 2 (for children)
rows in ChunkIndex.

ChunkData

table chunk row int1 int2 date1 date2 str1 str2

ChunkIndex

table chunk row int1

(Chunk6)

For the conventional tables, we created indexes on the
primary keys (id) and the foreign key (parent, id) in the Child

table. For the chunked tables, we created (table, chunk, row)
indexes on all tables (see previous section for the reasons)
as well as an (int1, table, chunk, row) index on ChunkIndex to
mimic the foreign key index on the Child table.

The tests used synthetically generated data for the in-
dividual schema layouts. For the conventional layout, the
Parent table was loaded with 10,000 tuples and the Child

table was loaded with 100 tuples per parent (1,000,000 tu-
ples in total). The Chunk Table Layouts were loaded with
equivalent data in fragmented form.
Test Query. Our experiments used the following simple
selection query.

SELECT p.id, ...

FROM parent p, child c

WHERE p.id = c.parent

AND p.id = ? .

(Q2)

Query Q2 has two parameters: (a) the ellipsis (...) rep-
resenting a selection of data columns and (b) the question
mark (?) representing a random parent id. Parameter (b)
ensures that a test run touches different parts of the data.
Parameter (a) – the Q2 scale factor – specifies the width of
the result. As an example, Query Q23 is Query Q2 with a
scale factor of 3: the ellipsis is replaced by 3 data columns

1
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ChunkData

ChunkData ChunkData
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Figure 8: Join plan for simple fragment query

each for parent and child.

SELECT p.id, p.col1, p.col2, p.col3,

c.col1, c.col2, c.col3

FROM parent p, child c

WHERE p.id = c.parent

AND p.id = ? .

(Q23)

Higher Q2 scale factors (ranging up to 90) are more chal-
lenging for the chunked representation because they require
more aligning joins.
Test 1 (Transformation and Nesting). In our first test,
we transformed Query Q2 using the methods described in
Section 6.1 and fed the resulting queries into the open-source
database MySQL [20] and the commercial database DB2.
We then used the database debug/explain facilities to look
at the compiled query plans. The MySQL optimizer was un-
able to unnest the nesting introduced by our query transfor-
mation. DB2 on the other hand presented a totally unnested
plan where the selective predicate on p.id was even pushed
into the chunk representing the foreign key of the child re-
lation. DB2’s evaluation plan is discussed in more detail in
the next test.

We then flattened the queries in advance and studied
whether the predicate order on the SQL level would influ-
ence the query evaluation time. We produced an ordering
where all predicates on the meta-data columns preceded the
predicates of the original query and compared it with the
ordering that mimics DB2’s evaluation plan. For MySQL,
the latter ordering outperformed the former ordering by a
factor of 5.

After adjusting the query transformation to produce flat-
tened queries with predicates in the correct order, we reran
the experiment on both databases. DB2 produced the same
execution plan and MySQL was able to produce a plan that
started with the most selective predicate (p.id = ?). As one
would expect, the query evaluation times for MySQL showed
an improvement.
Test 2 (Transformation and Scaling). To understand
how queries on Chunk Tables behave with an increasing
number of columns (output columns as well as columns used
in predicates) we analyzed the plans for a number of queries.
The pattern is similar for most queries and we will discuss
the characteristics based on Query Q23, which was designed
for the Chunk Table Layout in Chunk6.

The query plan is shown in Figure 8. The leaf operators
all access base tables. If the base tables are accessed via
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Figure 9: Response Times with Warm Cache

an index, an IXSCAN operator sits on top of the base table
with a node in between that refers to the used index. Here,
the meta-data index is called tcr (abbreviating the columns
table, chunk, and row) and the value index is called itcr. If a
base table access cannot be completely answered by an index
(e.g., if data columns are accessed) an additional FETCH

operator (with a link to the base table) is added to the plan.
Figure 8 contains two different join operators: a hash join
(HSJOIN) and an index nested-loop join (NLJOIN).

The plan in Figure 8 can be grouped into 5 regions. In
region 1 , the foreign key for the child relation is looked up.
The index access furthermore applies the aforementioned
selection on the ? parameter. In region 2 , the id column
of the parent relation is accessed and the same selection
as for the foreign key is applied. The hash join in region
3 implements the foreign key join p.id = c.parent. But
before this value-based join is applied in region 4 , all data
columns for the parent table are looked up. Note that region
4 expands to a chain of aligning joins where the join column
row is looked up using the meta-data index tcr if parent
columns in different chunks are accessed in the query. A
similar join chain is built for the columns of the child table
in region 5 .
Test 3 (Response Times with Warm Cache). Figure 9
shows the average execution times with warm caches on DB2
V9, with the same database server setup described in Sec-
tion 5. We conducted 10 runs; for all of them, we used the
same values for parameter ? so the data was in memory. In
this setting, the overhead compared to conventional tables
is entirely due to computing the aligning joins. The queries
based on narrow chunks have to perform up to 60 more joins
(layout Chunk3 with Q2 scale factor 90) than the queries on
the conventional tables which results in a 35 ms slower re-
sponse time. Another important observation is that already
for 15-column wide chunks, the response time is cut in half
in comparison to 3-column wide chunks and is at most 10
ms slower than conventional tables.
Test 4 (Logical Page Reads). Figure 10 shows the num-
ber of logical data and index page reads requested when
executing Query Q2. For all chunked representations, 74%
to 80% of the reads were issued by index accesses. Figure 10

Q2 scale factor ((# of data columns)/2 in Q2’s SELECT clause)
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Figure 10: Number of logical page reads.
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Figure 11: Response Times with Cold Cache

clearly shows that every join with an additional base table
increases the number of logical page reads. Thus this graph
shows the trade-off between conventional tables, where most
meta-data is interpreted at compile time, and Chunk Tables,
where the meta-data must be interpreted at runtime.
Test 5 (Response Times with Cold Cache). Figure 11
shows the average execution times with cold caches. For
this test, the database buffer pool and the disk cache were
flushed between every run. For wider Chunk Tables, i.e. 15
to 90 colums, the response times look similar to the page
read graph (Figure 10). For narrower Chunk Tables, cache
locality starts to have an effect. For example, a single phys-
ical page access reads in 2 90 column-wide tuples and 26
6 column-wide tuples. Thus the response times for the nar-
rower Chunk Tables are lower than for some of the wider
Chunk Tables. For a realistic application, the response times
would fall between the cold cache case and the warm cache
case.
Test 6 (Cache Locality Benefits). The effects of cache
locality are further clarified in Figure 12, which shows the
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Figure 12: Response Time Improvements for Chunk
Tables Compared to Vertical Partitioning

relative difference in response times between Chunk Fold-
ing and more conventional vertical partitioning. In the lat-
ter case, the source tables are partitioned as before, but
the chunks are kept in separate tables rather than being
folded into the same tables. For configurations with 3 and
6 columns, Chunk Folding exhibits a response time improve-
ment of more than 50 percent. In the configuration with
90 columns, Chunk Folding and vertical partitioning have
nearly identical physical layouts. The only difference is that
Chunk Folding has an additional column Chunk to identify
the chunk for realigning the rows, whereas in the vertical
partitioning case, this identification is done via the physical
table name. Since the Chunk column is part of the primary
index in the Chunk Folding case, there is overhead for fetch-
ing this column into the index buffer pools. This overhead
produces up to 25% more physical data reads and a response
time degradation of 10%.
Additional Tests. We also ran some initial experiments
on more complex queries (such as grouping queries). In this
case, queries on the narrowest chunks could be as much as an
order of magnitude slower than queries on the conventional
tables, with queries on the wider chunks filling the range in
between.

The overall result of these experiments is that very nar-
row Chunk Tables, such as Pivot Tables, carry considerable
overhead for reconstruction of rows. As Chunk Tables get
wider however, the performance improves considerably and
becomes competitive with conventional tables well before
the width of the Universal Table is reached.

6.3 Transforming Statements
Section 6.1 presented a systematic compilation scheme for

generating queries over Chunk Tables. This section briefly
describes how to cope with UPDATE, DELETE, and INSERT

statements.
In SQL, data manipulation operations are restricted to

single tables or updateable selections/views which the SQL
query compiler can break into separate DML statements.
For update and delete statements, predicates can filter the
tuples affected by the manipulation. As insert and delete

operations also require the modification of meta-data val-
ues, we devised a consistent DML query transformation logic
based on single table manipulations.

Since multiple chunked tables are required for a single
source table, a single source DML statement generally has
to be mapped into multiple statements over Chunk Tables.
Following common practice, we transform delete operations
into updates that mark the tuples as invisible instead of
physically deleting them, in order to provide mechanisms
like a Trashcan. Such an update naturally has to mark all
chunk tables as deleted in comparison to normal updates
that only have to manipulate the chunks where at least one
cell is affected.

Our DML transformation logic for updates (and thus also
for deletes) divides the manipulation into two phases: (a) a
query phase that collects all rows that are affected by an
update and (b) an update phase that applies the update
for each affected chunk with local conditions on the meta-
data columns and especially column row only. Phase (a)
transforms the incoming query with the query transforma-
tion scheme from Section 6.1 into a query that collects the
set of affected row values. One possibility to implement the
updates in Phase (b) is to nest the transformed query from
Phase (a) into a nested sub-query using an IN predicate on
column row. This approach lets the database execute all
the work. For updates with multiple affected chunks (e.g.,
deletes) the database however has to evaluate the query from
Phase (a) for each chunk relation. An alternative approach
would be to first evaluate the transformed predicate query,
let the application then buffer the result and issue an atomic
update for each resulted row value and every affected Chunk
Table.

We turn now to insert statements. For any insert, the
application logic has to look up all related chunks, collect the
meta-data for tables and chunks, and assign each inserted
new row a unique row identifier. With the complete set of
meta-data in hand, an insert statement for any chunk can
be issued.

Other operations like DROP or ALTER statements can be
evaluated on-line as well. They however require no access to
the database. Instead only the application logic has to do
the respective bookkeeping.

6.4 Chunk Tables vs. Chunk Folding
Chunk Folding mixes Extension and Chunk Tables. The

inclusion of Extension Tables does not affect the query part
of the previous section at all. The reason is that the only
interface between the different tables is the meta-column
Row, which is also available in the Extension Table Layout.

The only important change necessary to make Chunk Fold-
ing work is a refinement of the transformation logic in the
second bullet of Section 6.1 that enables also the meta-data
lookup for Extension Tables.

7. CONCLUSION
This paper has presented Chunk Folding, a new schema-

mapping technique for implementing multi-tenancy on top
of a standard relational database. In this technique, the
logical tables are vertically partitioned into chunks that are
folded together into application-specific conventional tables
and a fixed set of generic Chunk Tables. Chunk Tables can
vary in width, from very narrow Pivot-like Tables to very
wide Universal Tables.



This paper presented the results of several experiments de-
signed to measure the efficacy of Chunk Folding. We studied
the performance of standard relational databases on OLTP
queries formulated over Chunk Tables. Very narrow Chunk
Tables can carry considerable overhead for reconstruction of
rows, but wider Chunk Tables become competitive in per-
formance with conventional tables well before the width of
the Universal Table is reached.

Finally, this paper described a multi-tenant database test-
bed that simulates a simple hosted CRM service. We used
this testbed to characterize the performance degradation
that results as a standard relational database handles more
and more tables. A goal of our on-going work is to com-
pare the penalty of reconstructing rows introduced by Chunk
Folding with the penalty for additional paging introduced by
managing lots of tables.

More generally, our on-going work entails enhancing the
testbed to include extension tables as well as base tables.
This framework will allow us to study Chunk Folding in a
more complete setting. In particular, our goal is to develop
algorithms that take into account the logical schemas of ten-
ants, the distribution of data within those schemas, and the
associated application queries, and then create a suitable
Chunk Table Layout. Because these factors can vary over
time, it should be possible to migrate data from one repre-
sentation to another on-the-fly.
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