
a new n-gram ….a new n-gram arrives….

a

a new

a new n-gram

a

a new

a new n-gram

HT

?

?

a new n-gram arrives

✓

✘

Technische	Universität	München		
Fakultät	für	Informatik		
Lehrstuhl	für	Datenbanksysteme

Jan	Böttcher,	Moritz	Kaufmann,	Timo	Kersten,	Andreas	Kipf
{boettcher,	kaufmann,	kersten,	kipf}@in.tum.de

SIGMOD	2017	Programming Contest

The	Algorithm

Parallelization

Task:	Implementation	of	a	document	search	system
Input:	A	set	of	n-grams	and	many	queries
Workload:

Command	stream	of:
A)	Add	n-gram	to	database
D)	Delete	n-gram	from	database
Q)	Find	all	matching	n-grams	in	a	document

Team	OZero:	Optimized for N-Grams

Add	n-gram:	Index	sub	patterns	in	HT
Delete	n-gram: Use	MVCC
Query:	

for word in doc:
pattern = word
while (pattern in HT):

if match: output
pattern += next word

Evaluated Algorithms
Aho-Corasick:	O(n),	but	updates	are	too	expensive
Boyer-Moore	style:	Longest	jump	would	be	one	word
Shift-And:	Too	many	false	positives	due	to	the	large	amount	of	n-grams

Prioritized	execution	of	updates/deletes
A	query	executes	once	all	its	preceding
updates/deletes	completed

Inter-Query:	Run	queries	in	parallel
Intra-Query:	Partition	document	by	hash	values

OZero Optimizations
Custom	memory	allocation
Index	short	sub	patterns	and	store	maximum	suffix	length
Lock-free	data	structures
SIMDified parsing
Handcrafted	hash	function
Smallstring inlining
Handcrafted	worker	pool
Very	fast	compilation	due	to	–O0

ÞAlgorithms	do	not	perform	well	in	this	setting:
• Updates	are	expensive
• Bad	selectivity	(Xor-Shift)

-O0

Challenges
Exploiting	all	available	hardware	threads
Small	work	units
Dependencies	between	operations	impede	parallelization
Almost	only	updates,	very	few	queries
Large	amount	of	patterns
High	variance	in	pattern	lengths

Takeaways
Do	not	trust	your	expectations,	trust	your	experiments
Þ “Clever”	optimizations	may	not	pay	off
Be	lazy,	don’t	expect	speedups	from	upfront	work	(indexing)	in	an	
update-heavy	setting
Test	frameworks	are	indeed	useful

Each	operation	is	assigned	a	unique	version	from	a	global	counter
Queries	only	see	patterns	within	their	visibility	range
Deleted	patterns	are	marked	invisible	for	future	queries

MVCC

ÞEnables	parallelism

Worker-Pool

Parser

⚙⚙
⚙

Queries

++-
+-+

Adds/Removes

Output results

Input Operation Stream

Merge 
& order


